Applications of the β-Azidonation Reaction to Organic Synthesis. α, β-Enones, Conjugate Addition, and γ-Lactam Annulation

Philip Magnus,* Jérôme Lacour, P. Andrew Evans, Pascal Rigollier, and Hans Tobler
Contribution from the Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712

Received August 17, 1998

Abstract

The β-azido functionalization reaction provides a mechanistically different enone synthesis that involves treatment of $\mathbf{2}$ with fluoride anion to effect desilylation and concomitant β-elimination to give $\mathbf{3}$. Table 1 lists a number of examples of the direct conversion of a TIPS enol ether into the corresponding α, β-enone via a β-azido TIPS enol ether. The β-azido group can be ionized with $\mathrm{Me}_{3} \mathrm{Al}$ or $\mathrm{Me}_{2} \mathrm{AlCl}$ and the intermediate enonium ion trapped by a variety of nucleophiles such as an allylstannane, electron-rich aromatics, TMS enol ethers, $\mathrm{Et}_{2} \mathrm{AlCN}, \mathrm{Me}_{2} \mathrm{AlCCR}, \mathrm{Me}_{4} \mathrm{AlLi}$, and vinylaluminum reagents to give the products listed in Table 2. The diastereoselectivity of the reaction of a 4 -substituted enonium ion with indole shows an unusual increase of selectivity with increasing temperature. Reduction of the azide 2 provides access to β-amino TIPS enol ethers 5 , which, for example, can be converted into a cinnamide derivative and cyclized via a putative "ene" process into a γ-lactam.

Introduction

We recently reported the full details of the conversion of triisopropylsilyl (TIPS) enol ethers 1 into β-azido TIPS enol ethers 2 using the reagent combination of (PhIO) $\mathrm{n} / \mathrm{TMSN}_{3}$, Scheme 1. ${ }^{1}$ The reaction appears to proceed via the enonium ion 1a, which is trapped by azide ion to give 2. Attempts to trap 1a in situ, intermolecularly with nucleophiles other than azide were unsuccessful, and only $\mathbf{2}$ was formed. The adducts 2 can, in principle, be used as synthetic intermediates for a number of processes, and here we describe the conversion of 2

[^0]
Scheme 1

into α, β-unsaturated ketones $\mathbf{3},{ }^{2} \beta$-substituted TIPS enol ethers 4, ${ }^{3}$ and γ-lactams $\mathbf{6}^{4}$ via β-amino TIPS enol ethers 5. ${ }^{5}$
α, β-Unsaturated Enones. The main methods for the synthesis of α, β-unsaturated ketones ${ }^{6}$ from saturated ketones are (a) halogenation, followed by dehydro-halogenation, ${ }^{7}$ (b) utilizing sulfur ${ }^{8}$ or selenium ${ }^{9}$ derivatives, (c) DDQ, ${ }^{10}$ and (d) palladium(II) complexes. ${ }^{11,12}$

The β-azido functionalization methodology provides a mechanistically different enone synthesis that involves treatment of 2 with fluoride anion to effect desilylation and concomitant β-elimination to give 3, Scheme 1. The intermediate β-azido TIPS enol ether 2 need not be isolated but can be directly converted by treatment with n - $\mathrm{Bu}_{4} \mathrm{NF}$ (TBAF) into the α, β unsaturated ketone 3. The examples listed in Table 1 give yields for the two steps and refer to chromatographically purified material. The reaction is completely regiospecific (entries $4 / 5$ and $6 / 7$), and for entry 6 where there is the possibility of regioisomeric azides we found that $\mathbf{1 8}$ and 18a were formed (ca. 6:1). A particularly interesting example is shown in entry 9 . The β-azidonation reaction reintroduces the azide functionality which undergoes fluoride induced elimination to give the ketone-enone 24 (see also Table 2, entry 5). No existing methodology allows these manipulations without protection of the saturated carbonyl group. The overall conversion of a TIPS

Table 1.
Entry
enol ether to an enone takes place very rapidly, and under mild reaction conditions. For example (entry 1), TMSN_{3} was added to a mixture of 7 and PhIO in dichloromethane at $5^{\circ} \mathrm{C}$; after 5 min the solution was warmed to $25^{\circ} \mathrm{C}$ and cooled to $-5^{\circ} \mathrm{C}$, and TBAF/THF was added. The mixture was warmed to $25^{\circ} \mathrm{C}$ and worked-up to give the enone $\mathbf{8}(74 \%)$. The conversion of

[^1]29 into 30 (entry 12) is noteworthy since conventional phenylselenation of the saturated ketone followed by oxidation and elimination gave $\mathbf{3 0}$ in an overall yield of $32 \% .^{18}$ The example entry 13 (ring D of O-methyl estrone-17-TIPS enol ether) was complicated by the fact that β, γ-isomerization leads to a mixture of cis- and trans-ring D isomers.

In all cases it is important to use the TIPS enol ether derivative in this chemistry since less sterically encumbered silyl
(17) Wildman, W. C.; Wildman, R. B. J. Org. Chem. 1952, 17, 581. Marino, J. P.; Jaen, J. C. J. Am. Chem. Soc. 1982, 104, 3165.
(18) Magnus, P.; Leapheart, T.; Walker, C. J. Chem. Soc., Chem. Comтип. 1985, 1185. Unpublished results, Leapheart, T., Ph. D thesis, Indiana University, Bloomington, 1983. Hayakawa, K.; Ohsuki, S.; Kanematsu, K. Tetrahedron Lett. 1986, 27, 4205. Yeo, S.-K.; Hatae, N.; Seki, M.; Kanematsu, K. Tetrahedron 1995, 51, 3499.

Table 2.
Entry Substrate

Table 2. (Continued)
Entry
enol ethers (TMS and TBDMS) are desilylated in the β-azidonation step to give the unfunctionalized saturated ketone as the major product.

Conjugate Additions

The conjugate addition of a stabilized carbanion to an α, β unsaturated ketone was first reported by Michael, ${ }^{21}$ and now forms one of the most widely used reactions for the formation of carbon-carbon bonds. ${ }^{22-25}$

We expected that the β-azido TIPS enol ether $\mathbf{2}$ would require a Lewis acid to ionize it to the enonium ion 1a, which in the presence of a nucleophile would be converted into 4 , Scheme 1. It should be noted that conjugate addition of $\mathrm{Me}_{2} \mathrm{CuLi}$ to cyclohexenone followed by attempted trapping of the resulting enolate with either TIPSCl or TIPSOTf gave no more than 5% of the product 48 (Table 2, entry 10). Consequently, the products in Table 2 are not accessible via conventional conjugate addition/ trapping methodology.

[^2]The β-azido TIPS enol ethers did not react with Grignard reagents, with or without copper(I) catalysis, cuprates, or organozirconium derivatives. Several reactions were performed with a range of Lewis acids, and eventually the following features emerged. The Lewis basic solvents such as tetrahydrofuran or ether completely inhibited the reaction. Hexane and dichloromethane were the two solvents most commonly used. Most reactions proceeded at $25^{\circ} \mathrm{C}$ as well as at low temperatures. However, in some cases the yields were improved by an increase in temperature. Two equivalents of $\mathrm{Me}_{2} \mathrm{AlCl}$ were shown to be necessary to obtain the best yields. Generally, at least 2 equiv of the nucleophile are also utilized during these reactions. Lewis acid assisted conjugate addition was carried out by two different experimental procedures: (1) The nucleophile was mixed with the β-azido silyl enol ether in the reaction mixture. Then, the Lewis acid was added at the required temperature. This procedure is designated direct addition. (2) The Lewis acid was premixed with the nucleophile, and then, the β-azido silyl enol ether was added in solution at the required temperature. This procedure is designated reverse addition.

Treatment of a mixture of $\mathbf{3 3}$ and $3-\mathrm{N}, \mathrm{N}$-dimethylaminoanisole in hexane with $\mathrm{Me}_{2} \mathrm{AlCl}$ (2 equiv) for 10 min at $25^{\circ} \mathrm{C}$ gave 34 (79\%). Employing $\mathrm{NaBPh}_{4} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at reflux as the Lewis acid gave 34 (46\%). Sakurai ${ }^{26}$ and Mobilio ${ }^{27}$ have reported syntheses of ketones substituted at the β-position by an allyl group utilizing $\left(\mathrm{Et}_{2} \mathrm{Al}_{2} \mathrm{SO}_{4}\right.$ and titanium tetrachloride as Lewis acids. Treatment of $\mathbf{3 3}$ with allyltri- n-butylstannane

[^3](2 equiv) and $\mathrm{Me}_{2} \mathrm{AlCl}$ (2 equiv) in hexane at $-70^{\circ} \mathrm{C}$ produces the TIPS enol ether 35 (81%). A one-pot procedure (β azidonation plus conjugate addition) was carried out with $\mathbf{3 6}$ to give 37 (62%). Application of the same procedure as above to 34 resulted in the unexpected formation of the N-butenyl derivative 38 (60%) (entry 4). The probable mechanism of its formation is outlined in eq 1. Dehydrogenation of $\mathbf{3 4}$ with $\mathrm{PhIO} /$

TMSN_{3} produces the iminium ion intermediate 34a, which undergoes addition of the allylstannane to give 38. The selectivity toward the tert-amine functionality versus the TIPS enol ether is in agreement with our studies on the oxidation of amines and amides using the $\mathrm{PhIO} / \mathrm{TMSN}_{3}$ reagent combination. ${ }^{28}$

Conjugate addition of a silyl enol ether to an α, β-unsaturated ketone, catalyzed by titanium tetrachloride, is a key reaction in synthetic organic chemistry (Mukaiyama-Michael reaction). ${ }^{29}$ Other variations such as CsF,,30 montmorillonite clay, ${ }^{31} \mathrm{BF}_{3}$. $\mathrm{Et}_{2} \mathrm{O}^{32}$ also form 1,5-diketones. Conjugate addition catalyzed by trityl perchlorate produces δ-keto silyl enol ethers. ${ }^{33}$ The addition of silyl enol ethers to 4-tert-butyldimethylsilyl(oxy)-1-benzopyrylium salts is closely related. ${ }^{34}$

Treatment of $\mathbf{3 3}$ with 2 equiv of cyclohexanone TMS enol ether and $\mathrm{Me}_{2} \mathrm{AlCl}$ at $-70{ }^{\circ} \mathrm{C}$, in hexane, gave the carbonyl derivative 39 (55\%) as a (3:1) mixture of diastereoisomers (entry 5). In an analogous manner, the reaction of $\mathbf{3 3}$ and 1 -trimethylsilyl(oxy)styrene forms the silyl enol ether 40 (68\%).

Nagata reported the conjugate hydrocyanation of α, β-unsaturated ketones using $\mathrm{Et}_{2} \mathrm{AlCN} .{ }^{35} \beta$-Cyano silyl enol ethers are obtained when α, β-unsaturated ketones are treated with trimethylsilyl cyanide and $\mathrm{Me}_{2} \mathrm{AlCl} .{ }^{36}$ Treatment of $\mathbf{3 3}$ with $\mathrm{Et}_{2}-$ AlCN in dichloromethane at reflux gave the conjugate addition product 41 and the 1,2 -adduct $\mathbf{4 2}$. If the reaction between 33 and $\mathrm{Et}_{2} \mathrm{AlCN}$ is performed in tetrahydrofuran at reflux, only $41(60 \%)$ was obtained. This result further adds support to the credibility of the intermediate α, β-unsaturated oxonium ion 1a, Scheme 1.

[^4]Earlier attempts of conjugate addition reactions between a terminal acetylene and a conjugated enone were unsuccessful. ${ }^{37}$ Among several methods now available, ${ }^{38}$ nickel-catalyzed conjugate addition of organoaluminum acetylides to α, β-enones seems to be the most effective and reliable. ${ }^{39}$ In 1990, Kim reported a trialkylsilyl trifluoromethanesulfonate-promoted addition of alkynylzinc compounds to α, β-enones to afford γ, δ acetylenic silyl enol ethers. ${ }^{40}$ The terminal alkynes (entry 8) were first converted into their lithium salts and then treated with $\mathrm{Me}_{2} \mathrm{AlCl}$ and $\mathbf{3 3}$ to give the γ, δ-acetylenic TIPS enol ethers $\mathbf{4 3}$ (98%), 44 (70%), and 45 (84%), respectively.

Hydroalumination ${ }^{41}$ and hydrozirconation ${ }^{42}$ of terminal acetylenes is a useful reaction for several reasons: the mild reaction conditions, short reaction times, commercial availability of the reagents, and excellent regio- and stereochemical control of the reagent addition. Unfortunately, the lack of reactivity of the alkenylzirconium derivatives in $\mathrm{C}-\mathrm{C}$ bond formation have limited their use. Transmetalation chemistry to give a more reactive organometallic species was developed to broaden their reactivity. ${ }^{43-45}$ Zirconocene complexes have also been used catalytically to control the monocarboalumination and hydroalumination of alkynes. ${ }^{46}$ These new organometallic species have been used in conjugate addition reactions to α, β-enones. ${ }^{47} \mathrm{~A}$ solution of phenylacetylene and diisobutylaluminum hydride was heated at $50^{\circ} \mathrm{C}$ for 2 h , and cooled to $-70^{\circ} \mathrm{C}$, and 33 was added to give the trans- γ, δ-alkenic $46(46 \%)$ and γ, δ-acetylenic 43 (10\%). Phenylacetylene and hexyne-1, respectively, were treated with bis-(η^{5}-cyclopentadienyl) chlorohydridozirconium and then with $\mathrm{Me}_{2} \mathrm{AlCl}$. The vinylaluminum derivatives formed in this manner react with 33 to give, respectively, 46 (46%) and 47 (45%).

We decided to study the reaction of a β-azido silyl enol ether with $\mathrm{Me}_{3} \mathrm{Al}$ and the derived "ate" complex $\mathrm{Me}_{4} \mathrm{AlLi}$. Treatment of $\mathbf{3 3}$ with Me_{4} AlLi complex gave 48 (44%, 25% recovered 33). Exposure of 49 to $\mathrm{Me}_{3} \mathrm{Al}$ in toluene for 10 min at $25^{\circ} \mathrm{C}$ gave $50(45 \%)$. Using a preformed solution of $\mathrm{Me}_{4} \mathrm{AlLi}$ also converted 49 into 50 (45%).

Attempts to trap 1a with various oxygen- and nitrogennucleophiles were unsuccessful. Sulfur reagents are known to be softer nucleophiles and to perform well in conjugate additions. ${ }^{48}$ Treatment of $\mathbf{3 3}$ with thiophenol in the presence of $\mathrm{Me}_{3} \mathrm{Al}$ gave the β-mercapto-silyl enol ether 51 (97%). When this reaction was performed using direct addition conditions, traces of 3-methyl-silyl enol ether 48 were also isolated.

Stereochemical Outcome of the Conjugate Addition. The diastereoselectivity of dialkylcuprate conjugate addition to
(37) House, H. O.; Fisher, W. F. J. Org. Chem. 1969, 34, 3615. Corey, E. J.; Beames, D. J. J. Am. Chem. Soc. 1972, 94, 7210.
(38) Pappo, P. W.; Dajanni, E. Z.; Bruhn, M. S.; Brown, H. C.; Palmer, J. R.; Pappo, R. Tetrahedron Lett. 1975, 4217. Sinclair, J. A.; Molander, G. A.; Brown, H. C. J. Am. Chem. Soc. 1977, 99, 954. Corey, E. J.; Wollenburg, R. H. J. Am. Chem. Soc. 1977, 99, 8045.
(39) Hooz, J.; Layton, R. B. J. Am. Chem. Soc. 1971, 93, 7320-22. Hansen, R. T.; Carr, D. B.; Schwartz, J. J. Am. Chem. Soc. 1978, 100, 2245.
(40) Kim, S.; Lee, J. M. Tetrahedron Lett. 1990, 31, 7627.
(41) Whitney, C. C.; Zweifel, G. J. Am. Chem. Soc. 1967, 89, 2753.
(42) For reviews, see: Negishi, E.; Takahashi, T. Synthesis 1988, 1. Negishi, E. Pure Appl. Chem. 1981, 53, 2333. Schwartz, J.; Labinger, J. A. Angew. Chem., Int. Ed. Engl. 1976, 15, 333.
(43) Carr, B. D.; Schwartz, J. J. Am. Chem. Soc. 1977, 99, 639.
(44) Yoshifuji, M.; Loots, M. J.; Schwartz, J. Tetrahedron Lett. 1977, 15, 1303.
(45) Loots, M. J.; Schwartz, J. J. Am. Chem. Soc. 1977, 99, 8045.
(46) Van Horn, D. E.; Negishi, E. J. Am. Chem. Soc. 1978, 100, 2252. Negishi, E.; Van Horn, D. E.; Yoshida, T. J. J. Am. Chem. Soc. 1985, 107, 6639.
(47) Ireland, R. E.; Wipf, P. J. Org. Chem. 1990, 55, 1425. Lipschutz, B. H.; Ellsworth, E. L. J. Am. Chem. Soc. 1990, 112, 2, 7440.
(48) Cherkaukas, J. P.; Cohen, T. J. Org. Chem. 1992, 57, 6.

Scheme 2

Table 3. Reverse Addition with Indole and 52

reaction temperature	ratios β-indolo SEE trans $\mathbf{7 4} /$ cis 75	yields $(\%)$
$-70^{\circ} \mathrm{C}$	none	no reaction
$0^{\circ} \mathrm{C}$	$4.5: 1$	71
$+50^{\circ} \mathrm{C}$	$4.5: 1$	75

Table 4. Direct Addition with Indole and 52

reaction temperature	ratios β-indolo SEE trans $\mathbf{7 4} /$ cis $\mathbf{7 5}$	yields $(\%)$
$-70^{\circ} \mathrm{C}$	$2.3: 1$	68
$-40^{\circ} \mathrm{C}$	$3.0: 1$	36
$0^{\circ} \mathrm{C}$	$4.0: 1$	70
$+25^{\circ} \mathrm{C}$	$5.0: 1$	63
$+50^{\circ} \mathrm{C}$	$10.0: 1$	54

cyclohexenones has been studied with substituents at the $4-49$ and the 5 -positions. ${ }^{50}$ Conjugate addition of an organocuprate or Grignard reagent, with copper(I) catalysis, leads to the predominant formation of the trans-cyclohexanone products. In general the larger the nucleophile and the larger the group at the 4 -position are, the greater the diastereoisomeric excess.

4-Me Series. Treatment of 52 and 3-N,N-dimethylaminoanisole with $\mathrm{Me}_{2} \mathrm{AlCl}$ gave $\mathbf{5 3}$ (70\%, 3:1, trans-/cis-, entry 13). Similarly, 52 and 2 -trimethylsilyl(oxy)-prop-1-ene gave 54 ($64 \%, 4.8: 1$, trans-/cis-, entry 14). An interesting and unusual temperature effect was observed in the case of the aromatic nucleophile. The diastereoselectivity of the reaction increases with the reaction temperature! This effect was more thoroughly studied using indole as the nucleophile. Treatment of $\mathbf{5 2}$ with indole and $\mathrm{Me}_{3} \mathrm{Al}$ leads to the formation of trans-74 and cis-75 β-indolo silyl enol ethers (SEE) ($4: 1$ at $0{ }^{\circ} \mathrm{C}$), Scheme 2. The two different procedures (reverse or direct) were examined. With the reverse addition procedure, no or little temperature effect was detected (Table 3), whereas in the case of the direct addition procedure, a strong temperature effect was observed (Table 4).

4-Et Series. The direct addition procedure at $0{ }^{\circ} \mathrm{C}$ and at $+50^{\circ} \mathrm{C}$ was used with $\mathbf{5 5}$ and allyl tri- n-butyltin using $\mathrm{Me}_{2}-$ AlCl to give $56\left(79 \%, 1.7: 1\right.$, trans-/cis- at $0^{\circ} \mathrm{C} ; 83 \%, 2.6: 1$, trans-/cis- at $50^{\circ} \mathrm{C}$). The trans-/cis- ratio was determined by ${ }^{1} \mathrm{H}$ NMR and was confirmed by treatment of $\mathbf{5 6}$ with tetra- n butylammonium fluoride, and the crude reaction mixture was analyzed by gas chromatography, $(1.7: 1)$ at $0{ }^{\circ} \mathrm{C}$ and (2.6:1) at $50{ }^{\circ} \mathrm{C}$. By using indole as the nucleophile and utilizing the reverse addition procedure, slightly better ratios in favor of the trans-isomer 76:77 ($\sim 5: 1$) were obtained, compared to the 4-Me series. The reverse addition procedure at $+50{ }^{\circ} \mathrm{C}$ was also performed. This time a slight temperature effect was observed

[^5]Table 5.

	reaction temperature	ratios β-indolo SEE trans 76/cis 77	yields $(\%)$
reverse	$0^{\circ} \mathrm{C}$	$4.8: 1$	83
reverse	$+50^{\circ} \mathrm{C}$	$5.3: 1$	72
direct	$+55^{\circ} \mathrm{C}$	$8.5: 1$	51

Table 6.

	reaction temperature	ratios β-indolo SEE trans 78/cis 79	yields $(\%)$
procedure	$0^{\circ} \mathrm{C}$	$12: 1$	72
direct	$-70^{\circ} \mathrm{C}$	$5: 1$	53

Table 7.

substituent at the 4 position	procedure	reaction temperature	ratios β-indolo SEE trans/cis
Me	reverse	$0^{\circ} \mathrm{C}$	$4.5: 1$
Et	reverse	$0^{\circ} \mathrm{C}$	$4.8: 1$
Pr^{i}	reverse	$0^{\circ} \mathrm{C}$	$12: 1$
Bu^{t}	reverse	$0^{\circ} \mathrm{C}$	$>20: 1$

Scheme 3

(Table 5). The best ratio was, as expected, obtained using the direct addition procedure at higher temperature.
$4-\mathbf{P r}^{i}$ Series. The direct addition procedure at $0^{\circ} \mathrm{C}$ was used with 57, 1-trimethylsilyl(oxy)styrene, and $\mathrm{Me}_{2} \mathrm{AlCl}$ to give $\mathbf{5 8}$ ($44 \%, 12: 1$, trans-/cis-, entry 16). With indole as the nucleophile, a much better ratio in favor of the trans-isomer (78:79, 12:1) was obtained using the reverse procedure at $0^{\circ} \mathrm{C}$. The direct addition procedure at $-70^{\circ} \mathrm{C}$ was performed to confirm the temperature trend. As expected, a lower ratio (5:1) of diastereoisomers was observed, (Table 6).

4 - Bu^{t} Series. Compound 59 was prepared in situ and used immediately without purification. Treatment of $\mathbf{5 9}$ with indole, following the reverse addition procedure, leads to the formation of only one β-indolo silyl enol ether 80 (63%), the cisdiastereomer $\mathbf{8 1}$ was not detected (${ }^{1} \mathrm{H}$ NMR). Similarly, 59 and 3- N, N-dimethylaminoanisole on treatment with $\mathrm{Me}_{2} \mathrm{AlCl}$ gave $60(21 \%$, entry 17$)$, and two regioisomeric dienes (55%) formed by elimination of the azide from $\mathbf{5 9}$ followed by proton loss.

Scheme 4

Using the same temperature $\left(0^{\circ} \mathrm{C}\right)$ and the reverse addition procedure, we have shown that the diastereoisomeric excess increases with the size of the substituent at the C4-position (Table 7).

The two lower energy conformations of the intermediate enonium ion derived from 52, 55, 57, and 59 are 52a (R equatorial) and $\mathbf{5 2 b}$ (R axial), the former being more stable than the latter, Scheme 3. Each of the two conformations (52a and 52b) of the enonium ion has two possible modes of nucleophilic addition to it, which lead to four transition states and two products. The pathways leading to a boat transition state or having a gauche 1,2-interaction with the substituent at C4position are disfavored. This leads to the conclusion that the less stable enonium ion conformer 52b (chair/substituent axial), which is more reactive than the more stable conformer 52a, forms the major observed trans-products.

The reaction profile is best described as following the CurtinHammett principle. The ratio of the products is not determined by the conformer population ratio but by the relative energy of the two transition states. ${ }^{51}$
γ-Lactam Annulation. Reactions that retain the nitrogen functionality would be particularly interesting since β-amino silyl enol ethers are an unknown functional group array. ${ }^{4}$ The β-azido functionalization reaction allows ready access to β-amino TIPS enol ethers by reduction of the azido group in 33 with lithium aluminum hydride to give 83, Scheme 4 . The compound 83 is relatively stable and can be stored as its hydrochloride salt without noticeable decomposition to cyclohexenone.

It was decided to examine the intramolecular conjugate addition reaction depicted in Scheme 4. The cyclization of the acrylamide 84 to give the octahydroquinoline 87 is a favored process (6 -endo-trig), ${ }^{52,53}$ but would require the higher energy cis-amide conformer in order to arrive at $6 .{ }^{54}$ The amine 3 was readily converted into the α, β-unsaturated amide derivative $\mathbf{8 4}$ by treatment with acryloyl chloride/ $\mathrm{Et}_{3} \mathrm{~N} / \mathrm{THF}$ at $-78^{\circ} \mathrm{C}$.

[^6](54) LaPlanche, L. A.; Rogers, M. T. J. Am. Chem. Soc. 1964, 86, 337.

Scheme 5

Initial attempts to induce intramolecular 1,4-addition of $\mathbf{8 4}$ with Lewis acids such as TiCl_{4}, trimethylsilyltriflate, $\mathrm{Me}_{2} \mathrm{AlCl}$ or $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$, all failed. The only product isolated, apart from the starting material, was 3-(propenoylamino)-cyclohexanone. However, desilylation of $\mathbf{8 4}$ was avoided by the use of $\mathrm{Me}_{3} \mathrm{Al}$. Treatment of $\mathbf{8 4}$ with 1.3 equiv of $\mathrm{Me}_{3} \mathrm{Al}(2.0 \mathrm{M}$ solution in toluene) in 1,2-dichloroethane for 42 h produced the compound $87(9 \%)$ as a minor component. To our surprise the major product has the structure $\mathbf{8 5}$ (43%, structure by X-ray crystallography).

Treatment of $\mathbf{8 5}$ with tetra- n-butylammonium fluoride (1.2 equiv) in THF at $0^{\circ} \mathrm{C}(5 \mathrm{~min})$ caused cyclobutane opening to the known hydroquinoline-2,5-diones $\mathbf{8 8}$ and $\mathbf{8 9}$ (87\%). ${ }^{55}$ The trans-fused product most probably resulted from epimerization of the cis-fused compound under the reaction conditions.

The formation of the tricyclic amide $\mathbf{8 5}$ might involve the intermediate 84a which can either react by pathway a leading to $\mathbf{8 5}$ or undergo proton loss (pathway b) resulting in the minor product 87 .

In an effort to improve the yield of $\mathbf{8 7}$, a series of experiments were run at different temperatures. It was found that treatment of $\mathbf{8 4}$ with 2.5 equiv of $\mathrm{Me}_{3} \mathrm{Al}$ in anhydrous 1,2-dichlorobenzene at $180^{\circ} \mathrm{C}$ gave the lactam 87 in 10% yield. The major product of the above reaction was shown to have structure $\mathbf{8 6}(42 \%$, structure by X-ray crystallography). These two products were obtained in similar yields under the following conditions. $\mathrm{Me}_{3^{-}}$

[^7]
Scheme 6

Scheme 7

Al (1.2 equiv), 1,2-dichloroethane, $150^{\circ} \mathrm{C}, 22 \mathrm{~h}, 87$ (12\%) and $86(42 \%)$ or $\mathrm{Me}_{3} \mathrm{Al}$ (1.2 equiv), benzene, $150^{\circ} \mathrm{C}, 22 \mathrm{~h}, 87(7 \%)$ and 86 (45\%). No reaction occurred if $\mathbf{8 4}$ was heated to $180^{\circ} \mathrm{C}$ without $\mathrm{Me}_{3} \mathrm{Al}$. In all of the above experiments appreciable amounts of material less polar than $\mathbf{8 4}$ was observed. One of these nonpolar products was 48, presumably resulting from ionization of $\mathbf{8 4}$ to give 1a and conjugate addition of a methyl group from $\mathrm{Me}_{3} \mathrm{Al}$. Other reagents [such as CsF (1.0 equiv), $\mathrm{CH}_{3} \mathrm{CN}$, reflux, $30 \mathrm{~min} ; \mathrm{Ag}_{2} \mathrm{CO}_{3}$ (1.0 equiv) benzene, reflux, 23 h ; MAD (2.0 equiv), toluene, RT to reflux, $23 \mathrm{~h} ; \mathrm{Pd}(\mathrm{OAc})_{2}$ (0.2 equiv), benzoquinone (1.0 equiv), acetonitrile, 25 to $50^{\circ} \mathrm{C}$, 16 h] did not produce any of the products $\mathbf{8 5}, \mathbf{8 6}$, or $\mathbf{8 7}$.

We originally postulated ${ }^{4}$ that 86 arose from a $[2+2]$ pathway 86b, but attempts to incorporate deuterium at the benzylic position in the conversion of 91 into 93 (workup with $\mathrm{DCl})$ were unsuccessful, Scheme 5. Therefore it appears that the more plausible "ene" process 86a is responsible for the formation of 86 .

Treatment of $\mathbf{9 0}$ with 2.5 equiv of $\mathrm{Me}_{3} \mathrm{Al}$ at $80^{\circ} \mathrm{C}$ for 22 h gave only one cyclization product 92 in 44% yield. Optimal yields were obtained by using a small excess of $\mathrm{Me}_{3} \mathrm{Al}(1.1$ equiv) in o-dichlorobenzene at reflux for 20 h to give 92 (73%), Scheme 5. Similar results were observed for the cyclization of the more activated compound 91 . Optimal reaction conditions were obtained when 91 was treated with $\mathrm{Me}_{3} \mathrm{Al}$ (1.1 equiv) at $120{ }^{\circ} \mathrm{C}$ for 22 h to give $93(74 \%)$. At lower temperatures (83 ${ }^{\circ} \mathrm{C}$, dichloroethane reflux), the γ-lactam 93 (46%) was formed along with the cyclobutane adduct 94 (9\%).

Irradiation of 91 gave an equilibrium mixture of E-91/Z-91 (1.6:1) with no indication of any [2+2] cyclization. Treatment of $\mathrm{Z}-91$ with $\mathrm{Me}_{3} \mathrm{Al} / \mathrm{Cl}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Cl}$ at reflux gave 93 as the major product along with small amounts of $E-91$. Careful monitoring of the reaction demonstrated that $Z-91$ is first converted into E-91, which is then transformed into 93 and 94.

Treatment of $\mathbf{9 2}$ with TBAF resulted into desilylation to the product 95 in 90% yield. When 92 was exposed to the β-azidonation reaction conditions ($\mathrm{PhIO} / \mathrm{TMSN}_{3}$), a single epimer 96 was produced very cleanly as shown by the ${ }^{1} \mathrm{H}$ NMR of the crude reaction mixture.

Treatment of the E-isomer 97 with $\mathrm{Me}_{3} \mathrm{Al}$ (2.0 equiv) in toluene heated at reflux gave a mixture of $\mathbf{9 8}(51 \%)$ and 99 (24\%), Scheme 6. To confirm the structure, $\mathbf{9 8}$ was treated with TBAF/THF to give 100 (83%).

It was of interest to see if the "ene" reaction would tolerate the presence of an angular substituent. Reduction of the corresponding azides ${ }^{1}$ gave $\mathbf{1 0 1}$ and $\mathbf{1 0 2}$. The derived cinnamide $\mathbf{1 0 3}$ on treatment with $\mathrm{Me}_{3} \mathrm{Al} / \mathrm{PhMe}$ reflux gave the γ-lactam 105 (46%). Similarly, the 2-phenyl derivative 104 was heated
in xylene at reflux with $\mathrm{Me}_{3} \mathrm{Al}$ (1.1 equiv) to give $\mathbf{1 0 6}$ in a modest 24% yield. Given the rather sterically crowded nature of the cis-hexahydroindolones $\mathbf{1 0 5}$ and 106, it is quite surprising that they are formed at all and that elimination of the cinnamide appendage was not completely dominant (Scheme 7).

Summary

The β-azido TIPS enol ether functionality appears to quite flexible in its applications to organic synthesis. Depending on the specific reaction conditions, they may be converted into α, β enones, β-substituted TIPS enol ethers, and γ-lactams. These transformations are further illustrations of the increasing value of the enhanced stability of TIPS enol ethers. ${ }^{56}$

Experimental Section ${ }^{57}$

General Procedure for the Synthesis of α, β-Unsaturated Ketones. (\boldsymbol{E})-Cyclododec-2-en-1-one (8). Trimethylsilyl azide ($500 \mu \mathrm{~L}, 3.77$ mmol, 2.4 equiv) was added to a suspension of $7(530 \mathrm{mg}, 1.57 \mathrm{mmol}$, 1 equiv) and iodosobenzene ($416 \mathrm{mg}, 1.89 \mathrm{mmol}, 1.2$ equiv) in $\mathrm{CH}_{2}-$ $\mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $5^{\circ} \mathrm{C}$. After 5 min the mixture (now a clear solution) was warmed to $25^{\circ} \mathrm{C}$ (N_{2} evolution), after 10 min the solution was cooled to $-5^{\circ} \mathrm{C}$, and tetra- n-butylammonium fluoride ($4.0 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF, $4.0 \mathrm{mmol}, 4.0$ equiv) were added. The mixture was warmed to $25^{\circ} \mathrm{C}$, saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$ was added, and the phases were separated. The organic phase was washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 15 \mathrm{~mL})$ and brine $(15 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$, and the combined extracts dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated in vacuo. The residue was purified by flash chromatography over silica gel eluting with hexanes/EtOAc (17:3) to give $\mathbf{8}(209 \mathrm{mg}, 74 \%)$ as a colorless oil: IR

[^8](film) 2931, 2860, $1690 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.71-$ $6.61(1 \mathrm{H}, \mathrm{m}), 6.18(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}), 2.37(2 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz})$, $2.17-2.10(2 \mathrm{H}, \mathrm{m}), 1.60(2 \mathrm{H}$, quint, $J=6.6 \mathrm{~Hz}), 1.52-1.44(2 \mathrm{H}, \mathrm{m})$, 1.31-1.10 (10H, m). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{APT}, \mathrm{CDCl}_{3}$) δ 203.2, 146.6, $131.1,39.9,32.5,26.5,25.2,25.1,25.1,24.7,24.5,23.8 . \operatorname{HRMS}\left(\mathrm{M}^{+}\right)$ calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}$ 180.151, found 180.152 .

3-(2-Methoxy-4-N,N-dimethylaminophenyl)-1-triisopropylsilyl-(oxy)-cyclohexan-1-ene (34). Direct Addition Procedure. $\mathrm{Me}_{2} \mathrm{AlCl}$ ($1.0 \mathrm{~mL}, 1.0 \mathrm{M}$ in hexane, $1.0 \mathrm{mmol}, 2$ equiv) was added to a solution of $\mathbf{3 3}$ ($148 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) and $3-\mathrm{N}, \mathrm{N}$-dimethylaminoanisole ($302 \mathrm{mg}, 2.0 \mathrm{mmol}, 4$ equiv) in hexane $(4 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$. After 10 min saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$ were added, the mixture was filtered through Celite, and the phases were separated. The organic phase was washed with brine $(2 \times 10 \mathrm{~mL})$, and the aqueous phases were extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo. The residue was placed under high vacuum (2 mmHg) at $115^{\circ} \mathrm{C}$ for 1 h . The product was purified by flash chromatography over Florisil eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give 34 ($159 \mathrm{mg}, 79 \%$) as a colorless oil: IR (film) 2943, 2865, 1665 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.38(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.38$ $(1 \mathrm{H}, \mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}), 6.20(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 5.12(1 \mathrm{H}, \mathrm{d}, J=$ $3.4 \mathrm{~Hz}), 4.30-4.20(1 \mathrm{H}, \mathrm{m}), 3.46(3 \mathrm{H}, \mathrm{s}), 2.59(6 \mathrm{H}, \mathrm{s}), 2.25-2.03$ $(3 \mathrm{H}, \mathrm{m}), 1.77-1.57(3 \mathrm{H}, \mathrm{m}), 1.25-1.05(21 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, APT, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 158.0,152.0,150.9,129.4,124.0,107.5,105.5,96.8$, $54.8,40.7,33.5,31.0,30.4,21.7,18.4,13.1$. HRMS $\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{24} \mathrm{H}_{41} \mathrm{NO}_{2} \mathrm{Si} 403.291$, found 403.291.
$\mathbf{N a B P h}_{4}$ Mediated Reaction. A suspension of $\mathrm{NaBPh}_{4}(111 \mathrm{mg}$, $0.32 \mathrm{mmol}, 2$ equiv), 33 ($48 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.0$ equiv), and $3-N, N-$ dimethylaminoanisole ($98 \mathrm{mg}, 0.64 \mathrm{mmol}, 4.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was heated at reflux. After 15 min the solution was cooled to $25^{\circ} \mathrm{C}$, filtered through Celite, and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was evaporated in vacuo and the residue purified by Kugelrohr distillation at $100^{\circ} \mathrm{C}$ for 1 h under high vacuum and then by flash chromatography over silica gel eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give $\mathbf{3 4}(30 \mathrm{mg}, 46 \%)$.

3-(2-Propenyl)-1-triisopropylsilyl(oxy)-cyclohexan-1-ene (35). Direct Addition Procedure. $\mathrm{Me}_{2} \mathrm{AlCl}(2.0 \mathrm{~mL}, 1.0 \mathrm{M}$ in hexane, 2.0 mmol, 2 equiv) was added to a solution of $\mathbf{3 3}(295 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0$ equiv) and allyl tri- n-butylstannane ($620 \mu \mathrm{~L}, 2.0 \mathrm{mmol}, 2$ equiv) in hexane (5 mL) at $-70^{\circ} \mathrm{C}$. After 30 min the mixture was warmed to $25^{\circ} \mathrm{C}$. Saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$ were added, the mixture was filtered through Celite, and the phases were separated. The organic phase was washed with brine $(2 \times 10 \mathrm{~mL})$. The aqueous phases were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 15 \mathrm{~mL})$, and the combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo. The product was purified by flash chromatography over silica gel eluting with hexanes to give 35 ($220 \mathrm{mg}, 81 \%$) as a colorless oil: IR (film) 2946, 1662, $1640 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.77-5.63$ $(1 \mathrm{H}, \mathrm{m}), 4.94(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}), 4.85(1 \mathrm{H}, \mathrm{s}), 4.75(1 \mathrm{H}, \mathrm{s}, \mathrm{br}), 2.16-$ $2.10(1 \mathrm{H}, \mathrm{m}), 2.03-1.90(4 \mathrm{H}, \mathrm{m}), 1.74-1.42(4 \mathrm{H}, \mathrm{m}), 1.22-0.95(21 \mathrm{H}$, m). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{APT}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 151.4,137.6,115.9,107.7,41.9$, 35.0, 30.3, 29.1, 22.1, 18.3, 13.1. HRMS $\left(\mathrm{MH}^{+}\right)$calcd for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{OSi}$ 294.238, found 294.237.

2-(2-Propenyl)-4-triisopropylsilyl(oxy)-pyran-3-ene (37). Trimethylsilyl azide ($500 \mu \mathrm{~L}, 2.4 \mathrm{mmol}, 2.4$ equiv) was added to a suspension of $\mathbf{3 6}(408 \mathrm{mg}, 1.57 \mathrm{mmol})$ and iodosobenzene $(416 \mathrm{mg}$, 1.886 mmol , 1.2 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $-15{ }^{\circ} \mathrm{C}$. After 10 min the mixture was warmed to $25^{\circ} \mathrm{C}$, and then cooled to $-70^{\circ} \mathrm{C}$. Allyl tri- n-butylstannane ($775 \mu \mathrm{~L}, 2.50 \mathrm{mmol}, 1.6$ equiv) and $\mathrm{Me}_{2} \mathrm{AlCl}(2.5$ $\mathrm{mL}, 1.0 \mathrm{M}$ in hexane, $2.5 \mathrm{mmol}, 1.6$ equiv) were added successively. After 30 min the mixture was warmed to $25^{\circ} \mathrm{C}$, and saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$ were added. The mixture was filtered through Celite, and the phases were separated. The organic phase was washed with brine $(2 \times 10 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 15 \mathrm{~mL})$, and the combined extracts were dried $\left(\mathrm{Na}_{2}-\right.$ SO_{4}) and evaporated in vacuo. The product was purified by flash chromatography over silica gel eluting with hexanes to separate the tin derivatives, followed by hexanes/EtOAc (17:3) to give 37 (290 mg , 62%) as a colorless oil: IR (film) 2945, 1670, $1642 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.87-5.73(1 \mathrm{H}, \mathrm{m}), 5.09-5.02(2 \mathrm{H}, \mathrm{m}), 4.77$ $(1 \mathrm{H}, \mathrm{s}), 4.18-4.10(1 \mathrm{H}, \mathrm{m}), 4.00(1 \mathrm{H}$, ddd, $J=11.0,6.0,2.05 \mathrm{~Hz})$, $3.62(1 \mathrm{H}, \mathrm{td}, J=11.0,3.8 \mathrm{~Hz}), 2.41-2.14(3 \mathrm{H}, \mathrm{m}), 1.94-1.87(1 \mathrm{H}$,
$\mathrm{m}), 1.20-1.00(21 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{APT}, \mathrm{CDCl}_{3}\right) \delta 149.1$, $134.7,116.9,105.0,73.3,63.9,40.8,30.3,17.9,12.5 . \operatorname{HRMS}\left(\mathrm{MH}^{+}\right)$ calcd for $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{O}_{2}$ Si 297.225, found 297.225.

3-(2-Oxo-cyclohexyl)-1-triisopropylsilyl(oxy)-cyclohexan-1-ene (39). A solution of $\mathrm{Me}_{2} \mathrm{AlCl}(1.0 \mathrm{~mL}, 1.0 \mathrm{M}$ in hexane, $1.0 \mathrm{mmol}, 2$ equiv) was added to a solution of $33(148 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) and 1-trimethylsilyl(oxy)cyclohexene ($240 \mathrm{mg}, 1.4 \mathrm{mmol}, 2.8$ equiv) in hexane (5 mL) at $-70^{\circ} \mathrm{C}$. After 2 h the mixture was warmed to 25 ${ }^{\circ} \mathrm{C}$, and saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$ were added. The mixture was filtered through Celite, and the phases were separated. The organic phase was washed with brine $(2 \times 10 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$, and the combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo. The product was purified by flash chromatography over silica gel eluting with hexanes/EtOAc (9:1) to give 39 ($97 \mathrm{mg}, 55 \%$) as a colorless oil. The product was a (3:1) mixture of diastereoisomers: IR (film) 2939, 1712, $1665 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (major isomer) 4.82-4.79 $(1 \mathrm{H}, \mathrm{m}), 2.88-2.75(1 \mathrm{H}, \mathrm{m}), 2.48-2.20(3 \mathrm{H}, \mathrm{m}), 2.10-1.50(11 \mathrm{H}$, $\mathrm{m}), 1.20-1.00(21 \mathrm{H}, \mathrm{m}) . \delta$ (minor isomer) $4.75-4.72(1 \mathrm{H}, \mathrm{m}), 2.78-$ $2.68(1 \mathrm{H}, \mathrm{m}), 2.48-1.00(35 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{APT}, \mathrm{CDCl}_{3}\right)$ δ (major isomer) $213.1,151.6,104.9,55.5,42.0,32.8,29.8,29.6,28.0$, 26.8, 24.3, 21.6, 17.9, 12.6. HRMS (M^{+}) calcd for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{Si} 350.264$, found 350.263 .

3-Cyano-1-triisopropylsilyl(oxy)-cyclohexan-1-ene (41). A solution of $\mathrm{Et}_{2} \mathrm{AlCN}(500 \mu \mathrm{~L}, 1.0 \mathrm{M}$ in toluene, $0.50 \mathrm{mmol}, 2$ equiv) was added to a solution of $\mathbf{3 3}$ ($74 \mathrm{mg}, 0.250 \mathrm{mmol}, 1.0$ equiv) in THF (4 mL). The mixture was heated at reflux for 60 h and cooled to $25^{\circ} \mathrm{C}$. Saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$ were added, and the mixture was filtered through Celite, and the phases were separated. The extracts were washed with brine $(2 \times 10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated in vacuo. ${ }^{1} \mathrm{H}$ NMR analysis of the crude mixture reveals only the 1,4 -addition adduct $\mathbf{4 1}$, which was purified by flash chromatography over silica gel eluting with hexanes/EtOAc (4:1) to give 41 (42 mg, 60\%) as a colorless oil: IR (film) 2945, 2237, $1661 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 4.67(1 \mathrm{H}, \mathrm{d}, J=4.1 \mathrm{~Hz}), 2.64-2.59(1 \mathrm{H}$, $\mathrm{m}), 1.78-1.70(2 \mathrm{H}, \mathrm{m}), 1.51-1.31(2 \mathrm{H}, \mathrm{m}), 1.25-1.00(23 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{APT}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 154.8,121.5,98.5,29.4,26.4,26.3$, 20.6, 18.1, 12.8. HRMS $\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{16} \mathrm{H}_{29}$ NOSi 279.202, found 279.202.

1-Cyano-1-triisopropylsilyl(oxy)-cyclohexan-2-ene (42). A solution of $\mathrm{Et}_{2} \mathrm{AlCN}(680 \mu \mathrm{~L}, 1.0 \mathrm{M}$ in toluene, $0.68 \mathrm{mmol}, 2$ equiv) was added to a solution of $\mathbf{3 3}\left(100 \mathrm{mg}, 0.34 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$. The mixture was heated at reflux for 2 h , cooled to $25^{\circ} \mathrm{C}$, and quenched with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(50$ $\mathrm{mL})$. The mixture was filtered through Celite, and the phases were separated. The organic phase was washed with an aqueous brine $(2 \times$ 10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated in vacuo. ${ }^{1} \mathrm{H}$ NMR analysis of the crude mixture shows a (2:1) mixture of 41 and $\mathbf{4 2}$. The 1,2adduct was purified by flash chromatography over silica gel eluting with hexanes/EtOAc (17:3) to give $42(22 \mathrm{mg}, 23 \%)$ as a colorless oil: IR (film) 2946, 2229, $1653 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.92$ $(1 \mathrm{H}, \mathrm{dt}, J=9.9,3.6 \mathrm{~Hz}), 5.73(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}), 2.17-2.09(1 \mathrm{H}$, m), 2.04-1.97 ($2 \mathrm{H}, \mathrm{m}$), $1.90(1 \mathrm{H}, \mathrm{ddd}, J=12.8,9.4,3.4 \mathrm{~Hz}), 1.80-$ $1.78(2 \mathrm{H}, \mathrm{m}), 1.20-0.95(21 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{APT}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 132.1,128.2,122.1,67.0,37.7,24.3,18.6,18.3,13.2$.

3-(2-Phenyl-ethynyl)-1-triisopropylsilyl(oxy)-cyclohexan-1-ene (43). A solution of $n-\mathrm{BuLi}(420 \mu \mathrm{~L}, 2.4 \mathrm{M}$ in hexane, $1.0 \mathrm{mmol}, 2$ equiv) followed by $\mathrm{Me}_{2} \mathrm{AlCl}(1.0 \mathrm{~mL}, 1.0 \mathrm{M}$ in hexane, $1.0 \mathrm{mmol}, 2$ equiv) was added to phenylacetylene ($102 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.0$ equiv) in hexane (5 mL). After 5 min a solution of $\mathbf{3 3}(148 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) in hexane (3 mL) was added to the mixture. After 1.5 h saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$ were added. the mixture was filtered through Celite, and the phases were separated. The organic phase was washed with brine $(2 \times 10 \mathrm{~mL})$, and the aqueous phases were combined and extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$. The extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated in vacuo. The product was purified by flash chromatography over Florisil eluting with hexanes/EtOAc (19: 1) to give 43 ($174 \mathrm{mg}, 98 \%$) as a colorless oil: IR (film) 3056, 2945, $2139,1661 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.27(2 \mathrm{H}, \mathrm{m})$, $7.20-7.16(3 \mathrm{H}, \mathrm{m}), 4.89(1 \mathrm{H}, \mathrm{d}, J=3.9 \mathrm{~Hz}), 3.29-3.25(1 \mathrm{H}, \mathrm{m})$, 2.04-1.99 (2H, m), 1.88-1.73 (2H, m), 1.68-1.54 (2H, m), 1.17-
$0.90(21 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{APT}, \mathrm{CDCl}_{3}\right) \delta 151.8,131.5,128.1$, 127.4, 124.1, 104.4, 93.4, 80.1, 29.6, 29.1, 27.4, 21.0, 18.0, 12.6. HRMS $\left(\mathrm{MH}^{+}\right)$calcd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{OSi}$ 355.246, found 355.247.

3-((E)-2-Phenyl-ethenyl)-1-triisopropylsilyl(oxy)-cyclohexan-1ene (46). Hydroalumination Procedure. A solution of phenylacetylene ($110 \mu \mathrm{~L}, 1.0 \mathrm{mmol}, 2.0$ equiv) and DIBAL-H ($0.67 \mathrm{~mL}, 1.5 \mathrm{M}$ in hexane, $1.00 \mathrm{mmol}, 2.0$ equiv) in hexane $(4 \mathrm{~mL})$ was heated at $50^{\circ} \mathrm{C}$ for 2 h . The mixture was cooled to $-70^{\circ} \mathrm{C}$, and a solution of $\mathbf{3 3}$ (148 $\mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) in hexane (2 mL) was added. After 40 min saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$ were added. The mixture was filtered through Celite, and the phases were separated. The organic phase was washed with brine $(2 \times 10 \mathrm{~mL})$. The combined aqueous phases were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 15 \mathrm{~mL})$. The extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo. The residue was purified by flash chromatography over Florisil eluting with hexanes to give 46 ($83 \mathrm{mg}, 46 \%$) as a colorless oil: IR (film) 3025, 2942, 1661, 1646 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.30-7.00(5 \mathrm{H}, \mathrm{m}), 6.45(1 \mathrm{H}, \mathrm{d}$, $J=15.8 \mathrm{~Hz}), 6.17(1 \mathrm{H}, \mathrm{dd}, J=15.8,7.25 \mathrm{~Hz}), 5.01(1 \mathrm{H}, \mathrm{d}, J=3.2$ $\mathrm{Hz}), 3.00-2.96(1 \mathrm{H}, \mathrm{m}), 2.09-2.03(2 \mathrm{H}, \mathrm{m}), 1.69-1.61(2 \mathrm{H}, \mathrm{m}), 1.52-$ $1.41(1 \mathrm{H}, \mathrm{m}), 1.37-1.19(1 \mathrm{H}, \mathrm{m}), 1.13-1.01(21 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $(75$ $\left.\mathrm{MHz}, \mathrm{APT}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 152.2,138.3,135.4,129.6,128.8,127.2,126.5$, $105.9,38.6,30.3,29.5,21.2,18.3,13.1$. HRMS $\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{23} \mathrm{H}_{36^{-}}$ OSi 356.254, found 356.253.

3-((E)-1-Hexenyl)-1-triisopropylsilyl(oxy)-cyclohexan-1-ene (47). $\mathrm{Cp}_{2} \mathrm{ZrHCl}$ ($172 \mathrm{mg}, 0.66 \mathrm{mmol}, 2.0$ equiv) was added to a solution of hex-1-yne ($75 \mu \mathrm{~L}, 0.66 \mathrm{mmol}, 2.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$. After $45 \mathrm{~min}, \mathrm{Me}_{2} \mathrm{AlCl}(666 \mu \mathrm{~L}, 1.0 \mathrm{M}$ in hexane, $0.66 \mathrm{mmol}, 2$ equiv) was added to the yellow solution, which immediately became orange. After 5 min a solution of $\mathbf{3 3}\left(98 \mathrm{mg}, 0.33 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \mathrm{~mL})$ was added. After 1.5 h , saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$ were added, the mixture was filtered through Celite, and the phases were separated. The organic phase was washed with brine $(2 \times 10 \mathrm{~mL})$. The combined aqueous phases were extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$, and the extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo. The residue was purified by flash chromatography over Florisil eluting with hexanes to give $47(51 \mathrm{mg}, 45 \%)$ as a colorless oil: IR (film) 2929, 2867, $1661 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 5.50-$ $5.46(2 \mathrm{H}, \mathrm{m}), 5.02-4.98(1 \mathrm{H}, \mathrm{m}), 2.92-2.82(1 \mathrm{H}, \mathrm{m}), 2.07-1.97(4 \mathrm{H}$, $\mathrm{m}), 1.69-1.62(2 \mathrm{H}, \mathrm{m}), 1.53-1.42(1 \mathrm{H}, \mathrm{m}), 1.37-1.20(5 \mathrm{H}, \mathrm{m}), 1.16-$ $1.10(21 \mathrm{H}, \mathrm{m}), 0.86(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, APT, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 151.5,135.5,129.6,106.9,38.4,32.6,32.2,30.3,29.9,22.5$, 21.4, 18.3, 14.2, 13.1. HRMS $\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{21} \mathrm{H}_{40} \mathrm{OSi} 336.285$, found 336.284.

3-Methyl-1-triisopropylsilyl(oxy)-cyclohexan-1-ene (48). $\mathrm{Me}_{3} \mathrm{Al}$ ($1.0 \mathrm{~mL}, 2.0 \mathrm{M}$ in toluene, 2.00 mmol , 2 equiv) was added to a solution of $\mathrm{MeLi}\left(833 \mu \mathrm{~L}, 1.2 \mathrm{M}\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 1.00 \mathrm{mmol}, 2.0$ equiv) in hexane (6 $\mathrm{mL})$ at $0^{\circ} \mathrm{C}$, and after 5 min a solution of $\mathbf{3 3}(295 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv) in hexane (1 mL) was added to the mixture. After 1 h saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added, the mixture was filtered through Celite, and the phases were separated. The organic phase was washed with brine $(15 \mathrm{~mL})$. The aqueous phases were combined and extracted with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$, and the extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo. The product was purified by flash chromatography over silica gel eluting with hexanes to give $48(58.6 \mathrm{mg}, 44 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR analysis of the crude mixture shows that 25% of the starting β-azido silyl enol ether was present in the crude reaction mixture: IR (film) 2945, 2867, $1667 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.76-$ $4.72(1 \mathrm{H}, \mathrm{m}), 2.25-2.18(1 \mathrm{H}, \mathrm{m}), 2.04-1.98(2 \mathrm{H}, \mathrm{m}), 1.79-1.40(4 \mathrm{H}$, $\mathrm{m}), 1.20-1.05(2 \mathrm{H}, \mathrm{m}), 0.92(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, APT, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 151.0,109.9,31.5,30.2,29.9,22.8,22.2,18.3,13.1$. HRMS $\left(\mathrm{MH}^{+}\right)$calcd for $\mathrm{C}_{16} \mathrm{H}_{33} \mathrm{OSi}$ 269.230, found 269.231.

2,3-Dimethyl-1-triisopropylsilyl(oxy)-cyclohexan-1-ene (50). Me 3^{-} $\mathrm{Al}(1.0 \mathrm{~mL}, 2.0 \mathrm{M}$ in toluene, $1.00 \mathrm{mmol}, 2$ equiv) was added to a solution of 49 ($295 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv) in hexane $(5 \mathrm{~mL})$ at 25 ${ }^{\circ} \mathrm{C}$. After $10 \mathrm{~min}, \mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ were added. The mixture was filtered through Celite, and the phases were separated. The organic phase was washed with brine (5 mL), and the aqueous phases were combined and extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo. The product was purified by flash chromatography over silica gel eluting with hexanes to give 50 ($63 \mathrm{mg}, 45 \%$) as a colorless oil: IR (film) 2943,

2867, $1678 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 2.10-2.02(3 \mathrm{H}, \mathrm{m})$, $1.74(3 \mathrm{H}, \mathrm{s}), 1.68-1.57(2 \mathrm{H}, \mathrm{m}), 1.55-1.43(1 \mathrm{H}, \mathrm{m}), 1.25-1.05(22 \mathrm{H}$, $\mathrm{m}), 0.98(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{APT}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 144.0$, $115.0,34.2,31.6,31.1,20.9,20.1,18.4,14.8,13.6$. HRMS $\left(\mathrm{MH}^{+}\right)$ calcd for $\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{OSi}$ 283.246, found 283.245.

3-(Thiophenyl)-1-triisopropylsilyl(oxy)-cyclohexan-1-ene (51). $\mathrm{Me}_{3^{-}}$ $\mathrm{Al}(2.0 \mathrm{~mL}, 2.0 \mathrm{M}$ in toluene, $4.0 \mathrm{mmol}, 2$ equiv) was added to a solution of thiophenol ($410 \mu \mathrm{~L}, 4.0 \mathrm{mmol}, 2.0$ equiv) in hexane (10 $\mathrm{mL})$ at $0^{\circ} \mathrm{C}$. After 5 min a solution of $\mathbf{3 3}(591 \mathrm{mg}, 2.0 \mathrm{mmol}, 1.0$ equiv) in hexane (3 mL) was added at $0^{\circ} \mathrm{C}$. After $30 \mathrm{~min} \mathrm{Et}_{2} \mathrm{O}$ (20 $\mathrm{mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ were added. The mixture was filtered through Celite, and the organic phase was washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 20 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$, and the combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo. The product was purified by Kugelrohr distillation at $80^{\circ} \mathrm{C}$ under high vacuum for 2 h to give 51 ($703 \mathrm{mg}, 97 \%$) as a colorless oil: IR (film) 3059, 2866, $1657 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.35(1 \mathrm{H}, \mathrm{d}, J=7.85 \mathrm{~Hz})$, $7.05-6.94(3 \mathrm{H}, \mathrm{m}), 5.17-5.13(1 \mathrm{H}, \mathrm{m}), 3.94-3.90(1 \mathrm{H}, \mathrm{m}), 2.05-$ $1.95(3 \mathrm{H}, \mathrm{m}), 1.72-1.38(3 \mathrm{H}, \mathrm{m}), 1.17-1.00(21 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{APT}, \mathrm{CDCl}_{3}\right) \delta 154.3,136.4,131.3,128.7,126.4,103.7,44.9$, 29.8, 28.1, 19.2, 18.0, 12.5. HRMS $\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{OSSi} 362.210$, found 362.210 .
cis- and trans-4-Methyl-3-(2-oxo-propyl)-1-triisopropylsilyl(oxy)-cyclohexan-1-ene (54). $\mathrm{Me}_{2} \mathrm{AlCl}(2.0 \mathrm{~mL}, 1.0 \mathrm{M}$ in hexane, 2.00 mmol , 2 equiv) was added to a solution of $52(155 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv) and 2-trimethylsilyl(oxy)-prop-1-ene ($195 \mathrm{mg}, 1.50 \mathrm{mmol}, 3.0$ equiv) in hexane $(6 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 25 min at $0^{\circ} \mathrm{C}, \mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ were added, the mixture was filtered through Celite, and the organic phase was washed with brine $(15 \mathrm{~mL})$. The aqueous phases were extracted with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$, and the combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated in vacuo. The product was purified by flash chromatography over silica gel eluting with hexanes/EtOAc (10:1) to give $54(104 \mathrm{mg}, 64 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR analysis showed the product to be a mixture of diastereoisomers (4.8:1) in favor of the trans-isomer: IR (film) 2944, $1721,1667 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) δ (major isomer) $4.90-$ $4.86(1 \mathrm{H}, \mathrm{m}), 2.42-2.35(1 \mathrm{H}, \mathrm{m}), 2.20(1 \mathrm{H}, \mathrm{dd}, J=16.2,4.85 \mathrm{~Hz})$, $2.05-1.98(3 \mathrm{H}, \mathrm{m}), 1.96(1 \mathrm{H}, \mathrm{dd}, J=16.2,8.8 \mathrm{~Hz}), 1.69(3 \mathrm{H}, \mathrm{s})$, $1.52-1.47(1 \mathrm{H}, \mathrm{m}), 1.32-0.95(23 \mathrm{H}, \mathrm{m}), 0.83(1 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{APT}, \mathrm{C}_{6} \mathrm{D}_{6}$) δ (major isomer) 206.1, 151.1, 106.2, $49.5,37.6,33.0,30.0,29.6,28.8,19.4,18.3,13.0$. HRMS $\left(\mathrm{MH}^{+}\right)$calcd for $\mathrm{C}_{19} \mathrm{H}_{37} \mathrm{O}_{2}$ Si 325.256, found 325.256 .
trans- and cis-4-Isopropyl-3-(2-oxo-2-phenyl-ethyl)-1-triisopro-pylsilyl(oxy)-cyclohexan-1-ene (58). Prepared in an analogous manner to 40 from 57 ($169 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv), 1-trimethylsilyl(oxy)styrene ($234 \mathrm{mg}, 1.00 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{Me}_{2} \mathrm{AlCl}(2.0 \mathrm{~mL}, 1.0 \mathrm{M}$ in hexane, $2.00 \mathrm{mmol}, 2$ equiv). The product was purified by flash chromatography over silica gel eluting with hexanes/EtOAc (19:1) to give $\mathbf{5 8}(91 \mathrm{mg}, 44 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR analysis shows the product to be a mixture of diastereoisomers (12:1) in favor of the transisomer: IR (film) 3060, $1690,1667 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) δ (major isomer) $7.90-7.85(2 \mathrm{H}, \mathrm{m}), 7.15-7.03(3 \mathrm{H}, \mathrm{m}), 5.02(1 \mathrm{H}, \mathrm{d}$, $J=3.6 \mathrm{~Hz}), 3.07-3.02(1 \mathrm{H}, \mathrm{m}), 2.86(1 \mathrm{H}, \mathrm{dd}, J=16.0,5.3 \mathrm{~Hz}), 2.70$ $(1 \mathrm{H}, \mathrm{dd}, J=16.0,8.4 \mathrm{~Hz}), 2.15-1.98(2 \mathrm{H}, \mathrm{m}), 1.75-1.20(3 \mathrm{H}, \mathrm{m})$, $1.20-1.04(22 \mathrm{H}, \mathrm{m}), 0.96(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 0.78(3 \mathrm{H}, \mathrm{d}, J=6.8$ $\mathrm{Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{APT}, \mathrm{C}_{6} \mathrm{D}_{6}$) δ (major isomer) 200.4, 151.2, $137.6,132.8,128.5,128.0,106.4,44.8,44.0,33.6,28.3,27.3,21.8$, 21.2, 18.2, 17.9, 12.5. HRMS $\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{O}_{2} \mathrm{Si} 414.295$, found 414.295.
trans-5-Isopropyl-3-(2-propenyl)-2-methyl-1-triisopropylsilyl-(oxy)-cyclohexan-1-ene (62). Prepared in an analogous manner to 35 using the direct addition procedure with $\mathbf{6 1}(88 \mathrm{mg}, 0.250 \mathrm{mmol}, 1.0$ equiv), allyl tri- n-butylstannane ($166 \mathrm{mg}, 0.50 \mathrm{mmol}, 2.0$ equiv), and $\mathrm{Me}_{2} \mathrm{AlCl}(500 \mu \mathrm{~L}, 1.0 \mathrm{M}$ in hexane, 2.0 equiv). The product was purified by flash chromatography over silica gel eluting with hexanes to give $62(49.5 \mathrm{mg}, 56 \%) .{ }^{1} \mathrm{H}$ NMR analysis shows the product to be a single diastereoisomer: $[\alpha]^{25}{ }_{\mathrm{D}}=+34^{\circ}\left(c=0.94, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (film) 2945, 1682, $1640 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.82-5.68$ $(1 \mathrm{H}, \mathrm{m}), 4.98(1 \mathrm{H}, \mathrm{d}, J=3.7 \mathrm{~Hz}), 4.95(1 \mathrm{H}, \mathrm{s}), 2.35-2.25(1 \mathrm{H}, \mathrm{m})$, $2.05-1.98(2 \mathrm{H}, \mathrm{m}), 1.93-1.82(2 \mathrm{H}, \mathrm{m}), 1.70-1.30(4 \mathrm{H}, \mathrm{m}), 1.64(3 \mathrm{H}$,
s), $1.15-1.05(21 \mathrm{H}, \mathrm{m}), 0.85(6 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{APT}, \mathrm{CDCl}_{3}\right) \delta 144.2,138.5,115.5,113.6,39.2,37.4,36.1,34.6,32.3$, $28.9,19.9,19.8,18.1,15.1,13.2$. HRMS $\left(\mathrm{MH}^{+}\right)$calcd for $\mathrm{C}_{22} \mathrm{H}_{43} \mathrm{OSi}$ 351.308, found 351.308.
(E)-3-(2-Propenyl)-1-triisopropylsilyl(oxy)-cyclododecan-1-ene (64). Prepared in an analogous manner to $\mathbf{3 5}$ using the direct addition procedure with $63(190 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv), allyl tri- $n-$ butylstannane ($331 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.0$ equiv), and $\mathrm{Me}_{2} \mathrm{AlCl}(1.0 \mathrm{~mL}$, 1.0 M in hexane, $1.0 \mathrm{mmol}, 2.0$ equiv). The product was isolated by flash chromatography over silica gel eluting with hexanes to give $\mathbf{6 4}$ ($112 \mathrm{mg}, 59 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR analysis of the crude mixture shows only one isomer. The major isomer was assigned as the E-stereoisomer $\left({ }^{13} \mathrm{C}, \delta\right.$ major isomer 42.1 and δ minor isomer 44.0): IR (film) 2931, 1660, $1644 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.83-$ $5.69(1 \mathrm{H}, \mathrm{m}), 5.00-4.91(2 \mathrm{H}, \mathrm{m}), 4.23(1 \mathrm{H}, \mathrm{d}, J=10.3 \mathrm{~Hz}), 2.48-$ $2.37(1 \mathrm{H}, \mathrm{m}), 2.37-2.25(1 \mathrm{H}, \mathrm{m}), 2.12-2.03(1 \mathrm{H}, \mathrm{m}), 1.97-1.92(1 \mathrm{H}$, $\mathrm{m}), 1.90-1.72(2 \mathrm{H}, \mathrm{m}), 1.55-1.22(13 \mathrm{H}, \mathrm{m}), 1.20-1.02(21 \mathrm{H}, \mathrm{m})$, $0.89(2 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{APT}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 151.9,137.8,115.7$, $111.4,42.1,35.6,34.9,28.3,25.2,25.1,24.9,24.7,23.8,23.4,22.6$, 18.5, 18.4, 13.2. HRMS $\left(\mathrm{MH}^{+}\right)$calcd for $\mathrm{C}_{24} \mathrm{H}_{47} \mathrm{OSi} 379.340$, found 379.341 .

3-(2-Phenyl-ethynyl)-1-triisopropylsilyl(oxy)-cyclopentan-1-ene (66). Prepared in an analogous manner to 43 with β-azido silyl enol ether 65 ($141 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv), phenylacetylene (102 mg , $1.0 \mathrm{mmol}, 2.0$ equiv), $n-\mathrm{BuLi}(400 \mu \mathrm{~L}, 1.00 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexane $)$, and $\mathrm{Me}_{2} \mathrm{AlCl}(1.0 \mathrm{~mL}, 1.0 \mathrm{M}$ in hexane, $1.0 \mathrm{mmol}, 2.0$ equiv). The product was purified by flash chromatography over silica gel eluting with hexanes/EtOAc (97:3) to give $\mathbf{6 6}(127 \mathrm{mg}, 75 \%)$ as colorless oil: IR (film) 3081, 2945, 2139, $1644 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ $7.23-7.16(2 \mathrm{H}, \mathrm{m}), 6.76-6.70(3 \mathrm{H}, \mathrm{m}), 4.53(1 \mathrm{H}, \mathrm{m}), 3.41-3.36(1 \mathrm{H}$, m), 2.18-1.71 (4H, m), 0.95-0.85 (21H, m). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{APT}$, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 157.0,131.9,128.5,127.4,124.9,103.6,94.1,81.2,33.6,33.3$, 30.2, 18.1, 12.8. HRMS $\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{OSi} 340.222$, found 340.222.

3-(2-Oxo-propyl)-1-triisopropylsilyl(oxy)-cyclohexan-1-ene (67). $\mathrm{LiBPh}_{4} \operatorname{tris}(1,2$-dimethoxyethane) ($298 \mathrm{mg}, 0.500 \mathrm{mmol}, 1$ equiv) was added to a solution of $33(148 \mathrm{mg}, 0.500 \mathrm{mmol}, 1.0$ equiv) and 2-trimethylsilyl(oxy)-prop-1-ene ($195 \mathrm{mg}, 1.50 \mathrm{mmol}, 3.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$. After $48 \mathrm{~h}, \mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ were added, and the phases were separated. The organic phase was washed with brine $(2 \times 10 \mathrm{~mL})$, and the aqueous phases were extracted with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ and $\mathrm{EtOAc}(15 \mathrm{~mL})$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo. The product was purified by flash chromatography over silica gel eluting with hexanes/EtOAc (9:1) to give $67(69 \mathrm{mg}, 44 \%)$ as a colorless oil: IR (film) 2943, 1716, $1668 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 4.79-$ $4.75(1 \mathrm{H}, \mathrm{m}), 2.65-2.57(1 \mathrm{H}, \mathrm{m}), 1.93-1.85(2 \mathrm{H}, \mathrm{m}), 1.89(2 \mathrm{H}, \mathrm{d}, J$ $=7.1 \mathrm{~Hz}), 1.55(3 \mathrm{H}, \mathrm{s}), 1.53-1.23(4 \mathrm{H}, \mathrm{m}), 1.10-0.90(21 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{APT}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 205.8,151.7,107.3,50.2,30.8,30.2$, 29.9, 29.0, 21.6, 18.3, 13.0. HRMS (M^{+}) calcd for $\mathrm{C}_{18} \mathrm{H}_{35} \mathrm{O}_{2} \mathrm{Si} 311.241$, found 311.240 .

3-Indolo-1-triisopropylsilyl(oxy)-cycloheptan-1-ene (69). Prepared in an analogous manner to $74 / 75$ using the reverse addition procedure with β-azido silyl enol ether 68 ($155 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv), indole ($117 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.0$ equiv), and $\mathrm{Me}_{3} \mathrm{Al}(500 \mu \mathrm{~L}, 2.0 \mathrm{M}$ in toluene, $1.0 \mathrm{mmol}, 2.0$ equiv). The product was purified by flash chromatography over silica gel eluting with hexanes/EtOAc (17:3) to give $\mathbf{6 9}(95 \mathrm{mg}$, 49\%): mp 93-94 ${ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$. IR (film) $3469,2925,1653 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75(1 \mathrm{H}, \mathrm{s}, \mathrm{br}), 7.62(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz})$, $7.30(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.22-7.06(2 \mathrm{H}, \mathrm{m}), 6.94(1 \mathrm{H}, \mathrm{d}, J=2.0$ $\mathrm{Hz}), 5.19(1 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}), 3.79-3.75(1 \mathrm{H}, \mathrm{m}), 2.54(1 \mathrm{H}, \mathrm{dd}, J=$ $15.6,9.2 \mathrm{~Hz}), 2.31(1 \mathrm{H}, \mathrm{dd}, J=15.6,7.1 \mathrm{~Hz}), 2.04-1.61(6 \mathrm{H}, \mathrm{m})$, $1.10-1.00(21 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{APT}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 155.6,137.2$, $127.0,122.7,122.1,120.2,120.0,112.5,111.5,35.8,35.3,34.9,30.1$, 25.7, 18.3, 13.0. HRMS $\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{NOSi} 383.264$, found 383.265.
(2E)- and (2Z)-3-Indolo-1-triisopropylsilyl(oxy)-cyclododecan-1ene (70). Prepared in an analogous manner to 74/75 using the reverse addition procedure with $63(190 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv), indole $\left(117 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.0\right.$ equiv), and $\mathrm{Me}_{3} \mathrm{Al}(500 \mu \mathrm{~L}, 2.0 \mathrm{M}$ in toluene, $1.0 \mathrm{mmol}, 2.0$ equiv). ${ }^{1} \mathrm{H} \mathrm{NMR}$ analysis of the crude mixture shows a
(5:1) mixture of stereoisomers in favor of the E-isomer. The stereochemistry was assigned using ${ }^{13} \mathrm{C}$ NMR [for the allylic carbon, δ (major isomer) 35.5 and δ (minor isomer) 38.0]. The isomers were not separable by chromatography but were isolated together by flash chromatography over silica gel eluting with hexanes/EtOAc (4:1) to give 70 ($184 \mathrm{mg}, 81 \%$) as a colorless oil: IR (film) 3470, 3043, 1655 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (major isomer) $7.75(1 \mathrm{H}, \mathrm{s}, \mathrm{br})$, $7.62(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 7.23(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 7.16-7.04(2 \mathrm{H}$, $\mathrm{m}), 6.84(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 4.72(1 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}), 3.84-3.76$ $(1 \mathrm{H}, \mathrm{m}), 2.76-2.67(1 \mathrm{H}, \mathrm{m}), 2.00-1.20(17 \mathrm{H}, \mathrm{m}), 1.20-1.00(21 \mathrm{H}$, m) δ (minor isomer) there were two distinguishable signals at 4.81 $(1 \mathrm{H}, \mathrm{d}, J=10 \mathrm{~Hz}), 4.10-4.00(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}, ~ A P T$, $\mathrm{C}_{6} \mathrm{D}_{6}$) δ (major isomer) $151.3,137.0,127.5,122.1,121.6,120.1,119.8$, $119.2,111.7,111.4,35.5,32.8,28.4,25.4,25.0,24.8$ (2), 24.1, 23.4, 22.7, 18.4, 13.2. HRMS $\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{29} \mathrm{H}_{47} \mathrm{NOSi} 453.343$, found 453.342.

3-(3-Indolo)-1-triisopropylsilyl(oxy)-cyclopentan-1-ene (71). Prepared in an analogous manner to $74 / 75$ using the reverse addition procedure with β-azido silyl enol ether $\mathbf{6 5}(141 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv), indole ($117 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.0$ equiv), and $\mathrm{Me}_{3} \mathrm{Al}(500 \mu \mathrm{~L}, 2.0$ M in toluene, $1.0 \mathrm{mmol}, 2.0$ equiv). The product was purified by flash chromatography over silica gel eluting with hexanes/EtOAc (17:3) to give 71 ($129.6 \mathrm{mg}, 73 \%$) as a colorless oil: IR (film) $3416,1651 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75(1 \mathrm{H}, \mathrm{s}, \mathrm{br}), 7.65(1 \mathrm{H}, \mathrm{d}, J=7.8$ $\mathrm{Hz}), 7.28(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 7.19-7.05(2 \mathrm{H}, \mathrm{m}), 6.88(1 \mathrm{H}, \mathrm{d}, J=$ $2.1 \mathrm{~Hz}), 4.85(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}), 4.15-4.10(1 \mathrm{H}, \mathrm{m}), 2.47-2.36$ $(3 \mathrm{H}, \mathrm{m}), 1.96-1.85(1 \mathrm{H}, \mathrm{m}), 1.15-1.00(21 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{APT}, \mathrm{CDCl}_{3}\right) \delta 155.9,136.7,126.7,122.2,121.8,120.1,119.4,118.9$, 111.1, 105.8, 38.6, 33.6, 30.6, 17.4, 12.5. HRMS $\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{22} \mathrm{H}_{33}{ }^{-}$ NOSi 355.233, found 355.232.

3-(3-Indole)-1-triisopropylsilyl(oxy)-cyclohexan-1-one (72). Copper trifluoromethane sulfonate (II) ($122 \mathrm{mg}, 0.34 \mathrm{mmol}, 1.0$ equiv) was added to a solution of $33(100 \mathrm{mg}, 0.34 \mathrm{mmol}, 1.0$ equiv) and indole ($54 \mathrm{mg}, 0.47 \mathrm{mmol}, 1.4$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$. After $20 \mathrm{~min} \mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{NH}_{4} \mathrm{OH}(1: 1)(10 \mathrm{~mL})$, and water $(5 \mathrm{~mL})$ were added. The phases was separated, and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times$ $10 \mathrm{~mL})$. The organic phases were combined, washed with brine, and dried $\left(\mathrm{MgSO}_{4}\right)$. After filtration, the solvent was evaporated in vacuo, and the residue was purified by flash chromatography over silica gel eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give 72 ($38 \mathrm{mg}, 52 \%$): mp $105-106{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2}-\right.$ $\left.\mathrm{Cl}_{2}\right)$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3468,1708 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.03(1 \mathrm{H}, \mathrm{s}, \mathrm{br}), 7.55(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.28(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz})$, $7.17-7.02(2 \mathrm{H}, \mathrm{m}), 6.89(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 3.42-3.22(1 \mathrm{H}, \mathrm{m})$, $2.76-2.69(1 \mathrm{H}, \mathrm{m}), 2.55(1 \mathrm{H}$, ddd, $J=14.0,10.6,0.7 \mathrm{~Hz}), 2.43-$ $2.27(2 \mathrm{H}, \mathrm{m}), 2.21-2.14(1 \mathrm{H}, \mathrm{m}), 2.03-1.71(3 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{APT}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 209.6,136.9,126.7,122.2,120.6,119.6,119.5$, $119.4,111.5,47.9,41.5,35.8,31.7,24.6$. HRMS $\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{14} \mathrm{H}_{15^{-}}$ NO 213.115, found 213.115.

3-(3-Indole)-1-triisopropylsilyl(oxy)-cyclohexan-1-ene (73). Direct Addition Procedure. $\mathrm{Me}_{3} \mathrm{Al}(250 \mu \mathrm{~L}, 2.0 \mathrm{M}$ in toluene, $0.50 \mathrm{mmol}, 2$ equiv) was added to a solution of $\mathbf{3 3}(74 \mathrm{mg}, 0.250 \mathrm{mmol}, 1.0$ equiv) and indole ($58.6 \mathrm{mg}, 0.50 \mathrm{mmol}$, 2 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ at -65 ${ }^{\circ} \mathrm{C}$. After 20 min a solution of saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$ were added. The mixture was filtered through a Celite pad, and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 10$ $\mathrm{mL})$. The combined extracts were washed with a brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated in vacuo. The residue was purified by flash chromatography over silica gel eluting with hexanes/EtOAc (4:1) to give 73 ($71 \mathrm{mg}, 82 \%$) as a colorless oil: IR (film) $3419,1662 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89(1 \mathrm{H}, \mathrm{br}), 7.63(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.33$ $(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.17(1 \mathrm{H}, \mathrm{td}, J=7.6,0.85 \mathrm{~Hz}), 7.09(1 \mathrm{H}, \mathrm{td}, J$ $=7.6,0.85 \mathrm{~Hz}), 6.93(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 5.06(1 \mathrm{H}, \mathrm{d}, J=3.45 \mathrm{~Hz})$, 3.83-3.79 (1H, m), 2.15-2.00 (2H, m), 1.99-1.93 (1H, m), 1.78$1.63(4 \mathrm{H}, \mathrm{m}), 1.25-1.00(21 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}\right.$, APT, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right)$ $\delta 151.7,137.4,127.5,122.4,121.7,121.5,119.6,119.3,111.4,107.1$, 32.5, 30.5, 30.4, 21.4, 18.3, 13.1. HRMS $\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{NOSi}$ 369.249, found 369.248.
trans- and cis-4-Methyl-3-(3-indolo)-1-triisopropylsilyl(oxy)-cy-clohexan-1-ene (74 and 75). Direct Addition Procedure. $\mathrm{Me}_{3} \mathrm{Al}$ (500 $\mu \mathrm{L}, 2.0 \mathrm{M}$ in toluene, 1.0 mmol) was added to a solution of 52 (155
$\mathrm{mg}, 0.500 \mathrm{mmol}, 1.0$ equiv) and indole ($117 \mathrm{mg}, 1.00 \mathrm{mmol}, 2$ equiv) in hexane $(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After $15 \mathrm{~min} \mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ were added. The mixture was filtered through Celite, and the phases were separated. The organic phase was washed with saturated aqueous $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ and brine $(15 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ and $\mathrm{EtOAc}(15$ $\mathrm{mL})$, and the combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo. The product was purified by flash chromatography over Florisil eluting with hexanes to give (74 and 75) (134 mg, 70\%) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR analysis shows the product to be a $4: 1$ mixture of diastereoisomers in favor of the trans-isomer 74. At $-70^{\circ} \mathrm{C}$, a trans and cis mixture (74:75, 2.3:1) was observed ($130 \mathrm{mg}, 68 \%$). At -35 ${ }^{\circ} \mathrm{C}$, from 52 ($77 \mathrm{mg}, 0.25 \mathrm{mmol}$), a trans and cis mixture ($74: 75,3: 1$) was observed ($34.7 \mathrm{mg}, 36 \%$). At $25^{\circ} \mathrm{C}$, from 52 ($77 \mathrm{mg}, 0.25 \mathrm{mmol}$), a trans and cis mixture $(74: 75,5: 1)$ was observed $(60.7 \mathrm{mg}, 63 \%)$. At $50^{\circ} \mathrm{C}$, a trans and cis mixture $(\mathbf{7 4 : 7 5}, 10: 1)$ was observed (103 mg , 54%).

Reverse addItion Procedure. $\mathrm{Me}_{3} \mathrm{Al}(0.5 \mathrm{~mL}, 2.0 \mathrm{M}$ in toluene, $1.0 \mathrm{mmol}, 2$ equiv) was added to a solution of indole $(117 \mathrm{mg}, 1.0$ $\mathrm{mmol}, 2.0$ equiv) in hexane (5 mL) at $0^{\circ} \mathrm{C}$. After 5 min a solution of 33 ($148 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) in hexane (3 mL) was added. After $20 \mathrm{~min} \mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ were added. Workup as above gave (74 and 75) ($137 \mathrm{mg}, 71 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR analysis showed the product to be a mixture of diastereoisomers (4.5:1) in favor of the trans-isomer. At $50^{\circ} \mathrm{C}$, a trans and cis mixture $(\mathbf{7 4 : 7 5}, 4.5: 1)$ was observed ($130 \mathrm{mg}, 75 \%$). At -70 ${ }^{\circ} \mathrm{C}$, no formation of products was observed: IR (film) $3418,1668 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (major isomer) $747.84(1 \mathrm{H}, \mathrm{br}), 7.63$ $(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.30(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.19-7.04(3 \mathrm{H}, \mathrm{m})$, $6.93(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 4.95-4.91(1 \mathrm{H}, \mathrm{m}), 3.34-3.30(1 \mathrm{H}, \mathrm{m})$, 2.33-2.04 ($2 \mathrm{H}, \mathrm{m}$), 1.88-1.77 (2H, m), $1.65-1.44(1 \mathrm{H}, \mathrm{m}), 1.20-$ $1.05(21 \mathrm{H}, \mathrm{m}), 0.93(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}) ; \delta$ (minor isomer) 757.90 $(1 \mathrm{H}, \mathrm{br}), 7.63-7.04(3 \mathrm{H}, \mathrm{m}), 6.88(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 5.03(1 \mathrm{H}, \mathrm{d}, J$ $=4.4 \mathrm{~Hz}), 3.89-3.87(1 \mathrm{H}, \mathrm{m}), 2.33-1.4(5 \mathrm{H}, \mathrm{m}), 1.20-1.05(21 \mathrm{H}$, $\mathrm{m}), 0.66(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{APT}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ (major isomer) $74150.8,137.1,127.4,122.0,121.7,121.0,120.2,119.2,111.4$, $107.5,40.8,35.2,30.7,29.8,20.2,18.4,13.0 ; \delta$ (minor isomer) 75 $150.9,136.7,128.6,123.4,121.9,119.9,119.4,118.2,111.3,107.3$, $36.4,32.9,29.6,27.5,20.2,18.4,13.1$. HRMS $\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{24} \mathrm{H}_{37^{-}}$ NOSi 383.264, found 383.264.
trans-4-Isopropyl-3-indolo-1-cyclohexan-1-one (82). Tetra- n-butylammonium fluoride ($650 \mu \mathrm{~L}, 1.0 \mathrm{M}$ in $\mathrm{THF}, 650 \mu \mathrm{~mol}$) was added to a solution of 78 and $79(130 \mathrm{mg}, 0.32 \mathrm{mmol})$ in THF $(3 \mathrm{~mL})$. The mixture was stirred for $30 \mathrm{~min}, \mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$ were added, and the phases were separated. The organic layer was washed with water and brine. The aqueous layers were combined and extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated in vacuo. The product was purified by flash chromatography over silica gel eluting with hexanes/EtOAc (7:3) to give 82 (62 mg , 75%) as a colorless oil: IR (film) $3414,1699 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.23(1 \mathrm{H}, \mathrm{s}, \mathrm{br}), 7.66(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 7.35(1 \mathrm{H}$, $\mathrm{d}, J=7.9 \mathrm{~Hz}), 7.22-7.08(2 \mathrm{H}, \mathrm{m}), 6.96(1 \mathrm{H}, \mathrm{d}, J=2.25 \mathrm{~Hz}), 3.28$ $(1 \mathrm{H}, \mathrm{dt}, J=4.7,10.6 \mathrm{~Hz}), 2.83(1 \mathrm{H}, \mathrm{dd}, J=11.2,14.2 \mathrm{~Hz}), 2.63(1 \mathrm{H}$, ddd, $J=1.5,4.7,14.2 \mathrm{~Hz}), 2.54-2.46(2 \mathrm{H}, \mathrm{m}), 2.18-2.00(2 \mathrm{H}, \mathrm{m})$, $1.86-1.72(1 \mathrm{H}, \mathrm{m}), 1.66-1.52(1 \mathrm{H}, \mathrm{m}), 0.93(3 \mathrm{H}, \mathrm{d}, 6.9 \mathrm{~Hz}), 0.75$ $(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{APT}, \mathrm{CDCl}_{3}\right) \delta 212.1,137.8$, $126.0,121.9,121.5,119.2,119.1,118.3,11.4,48.3,46.1,40.9,39.5$, 27.2, 24.5, 21.7, 16.1. HRMS $\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO} 255.162$, found 255.162.

3-Amino-1-triisopropylsilyl(oxy)-cyclohexan-1-ene (83). To a mixture of 1-triisopropylsilyl(oxy)cyclohexene ($15.26 \mathrm{~g}, 60.0 \mathrm{mmol}$) and iodosylbenzene $(15.84 \mathrm{~g}, 72.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(600 \mathrm{~mL})$ at -20 ${ }^{\circ} \mathrm{C}$ (internal temperature) under argon was added trimethylsilyl azide ($19.1 \mathrm{~mL}, 144.0 \mathrm{mmol}$) over a 15 min period. The cold bath was removed after 15 min , and the mixture was allowed to warm to $25^{\circ} \mathrm{C}$. The solution was concentrated in vacuo to a yellow paste. The paste was dissolved in $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ and added slowly to a suspension of $\mathrm{LiAlH}_{4}(2.28 \mathrm{~g}, 60.0 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After the reaction was complete (30 min), the solution was quenched at $0^{\circ} \mathrm{C}$ by sequential addition of water $(2.3 \mathrm{~mL}), 15 \%$ aqueous NaOH solution $(2.3 \mathrm{~mL})$, and water $(7.0 \mathrm{~mL})$. After stirring for 1 h the white precipitate was
filtered, and the filtrate was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was chromatographed over silica gel eluting with EtOAc/ $\mathrm{MeOH} / \mathrm{NH}_{4} \mathrm{OH}(16: 4: 1)$, and the product fractions were combined and concentrated in vacuo. The residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$, washed with a 3 N aqueous NaOH solution $(2 \times 40 \mathrm{~mL})$, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration in vacuo afforded $\mathbf{8 3}(11.69 \mathrm{~g}, 73 \%)$ as an oil: IR (neat) $3352,1662 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 4.84$, $(1 \mathrm{H}, \mathrm{d}, J$ $=4.3 \mathrm{~Hz}), 3.37(1 \mathrm{H}, \mathrm{m}), 1.97(2 \mathrm{H}, \mathrm{m}), 1.73(2 \mathrm{H}, \mathrm{m}), 1.54(1 \mathrm{H}, \mathrm{m})$, $1.26(2 \mathrm{H}, \mathrm{s}), 0.95-1.30(22 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 152.3,109.3$, 47.0, 33.4, 29.8, 19.8, 17.9, 12.6. MS-CI m/e 270 ($\mathrm{M}+1$), 253 (100). Used directly in the next stage.

3-(Propenoylamino)-1-triisopropylsilyl(oxy)-cyclohexan-1-ene (84). A solution of $\mathbf{8 3}(1.347 \mathrm{~g}, 5.00 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.050 \mathrm{~mL}, 7.50 \mathrm{mmol})$ in THF (30 mL) was treated at $-78^{\circ} \mathrm{C}$ with acryloyl chloride $(0.490$ $\mathrm{mL}, 6.00 \mathrm{mmol})$. After 10 min the mixture was warmed to $25^{\circ} \mathrm{C}$ and partitioned between $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ and 50% saturated aqueous NaHCO_{3} $(30 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$. The organic phases were combined, washed with water $(25 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The residue was purified by flash chromatography over silica gel eluting with EtOAc to give 84 (1.444 $\mathrm{g}, 89 \%$) as an oil which crystallized upon standing: mp $66-67^{\circ} \mathrm{C}$. IR (neat) $3274,1653,1623 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.19,(1 \mathrm{H}, \mathrm{dd}, J=$ $16.9,1.6 \mathrm{~Hz}), 6.03(1 \mathrm{H}, \mathrm{dd}, J=17.0,10.1 \mathrm{~Hz}), 5.77(1 \mathrm{H}, \mathrm{d}, J=7.9$ $\mathrm{Hz}), 5.54(1 \mathrm{H}, \mathrm{dd}, J=10.1,1.6 \mathrm{~Hz}), 4.78(1 \mathrm{H}, \mathrm{d}, J=4.2 \mathrm{~Hz}), 4.58$ $(1 \mathrm{H}, \mathrm{m}), 2.00(2 \mathrm{H}, \mathrm{m}), 1.4-1.8(4 \mathrm{H}, \mathrm{m}), 0.8-1.2(21 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 164.4,154.9,131.1,125.9,103.9,44.7,29.7,28.8,19.4$, 17.8, 12.5. HRMS (CI) calcd for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{NSiO}_{2}$ 324.236, found 324.236.
cis-Octahydro-5-triisopropylsilyl(oxy)-quinoline-2-one (87), 5-Aza-10-triisopropylsilyl(oxy)-tricyclo[4.4.0.0 $\left.{ }^{3,10}\right]$-4-decanone (85) and (88/ 89). Cyclization of $\mathbf{8 4}$ at $80^{\circ} \mathbf{C}$. To a solution of $\mathbf{8 4}(0.162 \mathrm{~g}, 0.50$ mmol) in dry 1,2-dichloroethane (5 mL) was added $\mathrm{Me}_{3} \mathrm{Al}(0.33 \mathrm{~mL}$, $0.65 \mathrm{mmol}, 2.0 \mathrm{M}$ solution in toluene) at $0^{\circ} \mathrm{C}$. The mixture was heated at reflux under argon for 42 h , cooled to $0^{\circ} \mathrm{C}$, dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30$ mL), washed with saturated aqueous $\mathrm{NaHCO}_{3}(35 \mathrm{~mL})$, and dried ($\mathrm{Na}_{2}-$ SO_{4}). Concentration in vacuo followed by flash chromatography afforded $87(0.015 \mathrm{~g}, 9 \%)$: mp $118-119^{\circ} \mathrm{C}$. IR (neat) 3209,1668 , $1658 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.70(1 \mathrm{H}, \mathrm{s}), 4.83(1 \mathrm{H}, \mathrm{t}, J=3.6 \mathrm{~Hz})$, $3.68(1 \mathrm{H}, \mathrm{m}), 2.45(1 \mathrm{H}, \mathrm{m}), 2.30(2 \mathrm{H}, \mathrm{m}), 1.9-2.1(4 \mathrm{H}, \mathrm{m}), 1.5-1.7$ $(6 \mathrm{H}, \mathrm{m}), 0.9-1.2(21 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 172.5,149,1,102.2$, 51.7, 37.0, 29.5, 27.7, 22.2, 20.5, 18.1, 16.7. HRMS $\left(\mathrm{MH}^{+}\right)$calcd for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{NSiO}_{2} 324.2359$, found 324.2349 .85 (0.070 g , 43%): mp 166$167{ }^{\circ} \mathrm{C}$. IR $\left(\mathrm{CHCl}_{3}\right) 3680,2946,1669 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.29$ $(1 \mathrm{H}, \mathrm{s}), 3.38(1 \mathrm{H}, \mathrm{s}), 2.97(1 \mathrm{H}, \mathrm{t}, J=5.8 \mathrm{~Hz}), 2.68(1 \mathrm{H}, \mathrm{dt}, J=8.3$, $5.4 \mathrm{~Hz}), 1.98(1 \mathrm{H}, \mathrm{q}, J=5.3 \mathrm{~Hz}), 1.88(1 \mathrm{H}, \mathrm{m}), 1.2-1.5(5 \mathrm{H}, \mathrm{m})$, $0.8-1.1(21 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 178.5,78.6,54.5,49.7,44.8$, 33.1, 29.0, 28.4, 18.6, 17.8, 13.6. HRMS $\left(\mathrm{MH}^{+}\right)$calcd for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{NSiO}_{2}$ 324.2359, found 324.2363. A solution of $\mathbf{8 5}(6 \mathrm{mg}, 0.019 \mathrm{mmol})$ in THF (2 mL) was treated with TBAF $(0.020 \mathrm{~mL}, 1.05$ equiv $1, \mathrm{M}$ in THF) at $-78{ }^{\circ} \mathrm{C}$ for 5 min . The mixture was concentrated in vacuo, and the residue was dissolved in dichloromethane $(10 \mathrm{~mL})$, washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 3 \mathrm{~mL})$, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the extract in vacuo gave $\mathbf{8 8} / \mathbf{8 9}$ ($3.5 \mathrm{mg}, 97 \%, 7: 1$ ratio). ${ }^{55}$

Cyclization of 84 at $180{ }^{\circ} \mathrm{C}$. A solution of $84(0.050 \mathrm{~g}, 0.15 \mathrm{mmol})$ in dry 1,2-dichlorobenzene (5 mL) was treated at $0{ }^{\circ} \mathrm{C}$ with $\mathrm{Me}_{3} \mathrm{Al}$ ($0.190,0.38 \mathrm{mmol}$, of 2.0 M solution in toluene). The solution was heated to reflux under argon. Upon reaction completion (30 min) the solution was quenched at $0^{\circ} \mathrm{C}$ with saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo. The residue was purified by flash chromatography over silica gel eluting with EtOAc to give $87(0.005 \mathrm{~g}, 10 \%)$ and $86(0.021 \mathrm{~g}, 42 \%)$: mp $110-111{ }^{\circ} \mathrm{C}$. IR (neat) $3237,1699,1665 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $6.13(1 \mathrm{H}, \mathrm{s}), 4.99(1 \mathrm{H}, \mathrm{t}, J=3.8 \mathrm{~Hz}), 3.72(1 \mathrm{H}, \mathrm{m}), 3.03(1 \mathrm{H}, \mathrm{t}, J=$ $8.6 \mathrm{~Hz}), 2.59(1 \mathrm{H}, \mathrm{dt}, J=9.4,7.7 \mathrm{~Hz}), 1.9-2.2(2 \mathrm{H}, \mathrm{m}), 1.80(1 \mathrm{H}$, $\mathrm{m}), 1.45(1 \mathrm{H}, \mathrm{m}), 1.25(3 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 0.9-1.2(21 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$

[^9]NMR $\left(\mathrm{CDCl}_{3}\right) \delta 180.6,148.7,104.1,53.0,41.9,38.7,29.4,20.8,18.0$, 14.2, 12.6. HRMS (CI) calcd for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{NSiO}_{2} 324.236$, found 324.235 .

3-((E)-3-Phenylpropenoylamino)-1-triisopropylsilyl(oxy)-cyclo-hexan-1-ene (90). A solution of $83(1.88 \mathrm{~g}, 7.00 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.50$ $\mathrm{mL}, 10.50 \mathrm{mmol})$ in THF (40 mL) was treated at $-78{ }^{\circ} \mathrm{C}$ with cinnamoyl chloride ($1.290 \mathrm{~g}, 7.70 \mathrm{mmol}$) in THF (4 mL). After completion of the reaction (5 min), the cold bath was removed and the solution partitioned between $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times$ 15 mL). The extracts were combined, washed with water ($2 \times 10 \mathrm{~mL}$), and dried $\left(\mathrm{MgSO}_{4}\right)$. Concentration in vacuo afforded an oil which crystallized from n-pentane to give $90(2.480 \mathrm{~g}, 89 \%)$ as a white powder: mp 152-153 ${ }^{\circ} \mathrm{C}$. IR (neat) $3267,1654 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.59(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}), 7.47(2 \mathrm{H}, \mathrm{m}), 7.33(3 \mathrm{H}, \mathrm{m}), 6.34$ $(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}), 5.57(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 4.86(1 \mathrm{H}, \mathrm{d}, J=4.3$ $\mathrm{Hz}), 4.70(1 \mathrm{H}, \mathrm{m}), 2.07(2 \mathrm{H}, \mathrm{t}, J=5.5 \mathrm{~Hz}), 1.5-1.9(4 \mathrm{H}, \mathrm{m}), 0.9-1.2$ $(21 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 164.8,155.2,140.8,134.9,129.5,128.7$, 127.7, 121.1, 104.0, 45.0, 29.8, 29.0, 19.5, 17.9, 12.6. HRMS (CI) calcd for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{NSiO}_{2} 399.259$, found 399.260 .

3-[(E)-3-(4-Nitrophenyl)-propenoylamino]-1-triisopropylsilyl-(oxy)-cyclohexan-1-ene (91). A solution of 4-nitrocinnamoyl chloride $(1.164 \mathrm{~g}, 5.50 \mathrm{mmol})$ in THF (10 mL) was added to $83(1.348 \mathrm{~g}, 5.00$ $\mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.050 \mathrm{~mL}, 7.50 \mathrm{mmol})$ in THF $(25 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After the reaction was complete, the cold bath was removed, and the solution was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times$ $10 \mathrm{~mL})$. The organic phase was washed with brine (40 mL), and water $(20 \mathrm{~mL})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. Concentration in vacuo gave 91 (2.124 g, 96%): mp $62^{\circ} \mathrm{C}$. IR (neat) $3261,2943,1657 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 8.19(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.63(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}), 7.61(2 \mathrm{H}, \mathrm{d}, J$ $=8.2 \mathrm{~Hz}), 6.47(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}), 5.69(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 4.85$ $(1 \mathrm{H}, \mathrm{d}, J=4.1 \mathrm{~Hz}), 4.69(1 \mathrm{H}, \mathrm{m}), 2.07(1 \mathrm{H}, \mathrm{t}, J=5.5 \mathrm{~Hz}), 1.5-1.9$ $(4 \mathrm{H}, \mathrm{m}), 0.9-1.2(21 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 163.7,155.4,148.0$, 141.2, 138.0, 128.2, 125.3, 124.0, 103.6, 45.3, 29.7, 28.9, 19.4, 17.9, 12.5. HRMS (MH^{+}) calcd for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{SiO}_{4} 445.252$, found 445.252 .

3-Benzyl-4-triisopropylsilyl(oxy)-1,3,3a,6,7,7a-hexahydro-2H-in-dol-2-one (92). A solution of $90(0.40 \mathrm{~g}, 1.0 \mathrm{mmol})$ in dry $1,2-$ dichlorobenzene (40 mL) was treated at $0{ }^{\circ} \mathrm{C}$ with $\mathrm{Me}_{3} \mathrm{Al}(0.550 \mathrm{~mL}$, $1.10 \mathrm{mmol}, 2.0 \mathrm{M}$ solution in toluene). The ice bath was removed and the solution warmed to $25^{\circ} \mathrm{C}$ and then heated to reflux under argon. After 20 h the mixture was cooled to $0^{\circ} \mathrm{C}$ and quenched with saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ and concentrated under high vacuum at 50 ${ }^{\circ} \mathrm{C}$. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 15 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Flash chromatography over silica gel eluting with EtOAc gave $92(0.292 \mathrm{~g}, 73 \%): \mathrm{mp} 156^{\circ} \mathrm{C}$. IR (neat) $3223,1698,1664 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.82(1 \mathrm{H}, \mathrm{s}), 7.55(2 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 7.0-7.2$ $(3 \mathrm{H}, \mathrm{m}), 4.92(1 \mathrm{H}, \mathrm{dd}, J=4.5,2.9 \mathrm{~Hz}), 3.27(1 \mathrm{H}, \mathrm{dd}, J=14.2,3.6$ $\mathrm{Hz}), 3.12(1 \mathrm{H}, \mathrm{m}), 3.00(1 \mathrm{H}, \mathrm{dd}, J=14.2,8.5 \mathrm{~Hz}), 2.86(1 \mathrm{H}, \mathrm{td}, J=$ $8.8,3.7 \mathrm{~Hz}), 2.76(1 \mathrm{H}, \mathrm{t}, J=8.3 \mathrm{~Hz}), 1.7-1.9(1 \mathrm{H}, \mathrm{m}), 1.6-1.7(1 \mathrm{H}$, m), $1.3-1.5(1 \mathrm{H}, \mathrm{m}), 0.9-1.2(22 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 170.8$, $148.2,140.6,129.2,128.0,125.9,105.2,52.7,44.9,42.7,35.5,29.2$, 21.2, 18.1, 12.6. HRMS $\left(\mathrm{MH}^{+}\right)$calcd for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{NSiO}_{2} 400.267$, found 400.268 .

3-(4-Nitrobenzyl)-4-triisopropylsilyl(oxy)-1,3,3a,6,7,7a-hexahydro$\mathbf{2 H}$-indol-2-one (93) and 8-(4-Nitrophenyl)-5-aza-10-triisopropylsi-lyl(oxy)-tricyclo[4.4.0.0 ${ }^{3,10}$]-decan-4-one (94). A solution of 91 (0.444 $\mathrm{g}, 1.00 \mathrm{mmol})$ in toluene (45 mL) was treated at $0{ }^{\circ} \mathrm{C}$ with $\mathrm{Me}_{3} \mathrm{Al}$ ($0.550 \mathrm{~mL}, 1.10 \mathrm{mmol}, 2.0 \mathrm{M}$ solution in toluene). The solution was heated to reflux under argon. After 22 h the mixture was cooled to 0 ${ }^{\circ} \mathrm{C}$ and quenched with water $(0.5 \mathrm{~mL})$, partitioned between $\mathrm{Et}_{2} \mathrm{O}(200$ mL) and saturated aqueous Rochelle's salt solution (100 mL). The organic phase was washed with a 50% saturated aqueous $\mathrm{NaHCO}_{3}(50$ $\mathrm{mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Flash chromatography over silica gel eluting with EtOAc gave 93 ($0.326 \mathrm{~g}, 74 \%$): mp 146$148{ }^{\circ} \mathrm{C}$. IR $\left(\mathrm{CHCl}_{3}\right) 3430,1694,1665 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.09$ $(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.41(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 6.47(1 \mathrm{H}, \mathrm{s}), 5.10(1 \mathrm{H}$, $\mathrm{t}, J=3.7 \mathrm{~Hz}), 3.71(1 \mathrm{H}, \mathrm{m}), 3.23(1 \mathrm{H}, \mathrm{dd}, J=13.4,3.0 \mathrm{~Hz}), 3.16$ $(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 2.82(1 \mathrm{H}, \mathrm{m}), 2.80(1 \mathrm{H}, \mathrm{qd}, J=13.4,3.6 \mathrm{~Hz})$, $1.95-2.20(2 \mathrm{H}, \mathrm{m}), 1.80-1.95(1 \mathrm{H}, \mathrm{m}), 0.60-1.40(22 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 178.3,148.7,147.9,146.4,129.9,123.4,105.7,52.8,44.6$,
42.5, 35.4, 29.3, 21.1, 18.0, 12.5. HRMS $\left(\mathrm{MH}^{+}\right)$calcd for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{~N}_{2}-$ $\mathrm{SiO}_{4} 445.252$, found $445.251 .94(40 \mathrm{mg}, 9 \%)$. IR $\left(\mathrm{CHCl}_{3}\right) 3421,3023$, 2946, 2867, $1692 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.12(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz})$, $7.36(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}) 5.52(1 \mathrm{H}, \mathrm{b}), 4.21-4.17(1 \mathrm{H}, \mathrm{m}), 3.85(1 \mathrm{H}$, d, $J=7.2 \mathrm{~Hz}), 3.42-3.36(1 \mathrm{H}, \mathrm{m}), 2.85-2.78(1 \mathrm{H}, \mathrm{m}), 2.0-1.0(6 \mathrm{H}$, m), $0.95-0.80(21 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 178.9,146.5,145.7$, $129.4,122.9,77.1,52.6,51.8,41.6,40.0,36.3,28.4,18.0,16.7,13.1$. HRMS $\left(\mathrm{MH}^{+}\right)$calcd for $\mathrm{C}_{24} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{SiO}_{4} 445.252$, found 445.251 .
1,3,3a,6,7,7a-hexahydro-3-benzyl-2H-indol-2,4-dione (95). To a solution of $92(50 \mathrm{mg}, 0.125 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added $n-\mathrm{Bu}_{4} \mathrm{NF}\left(0.13 \mu \mathrm{~L}, 1.0 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$. The solution was warmed to $25^{\circ} \mathrm{C}$ and after 20 min the solution was evaporated in vacuo and the residue purified by chromatography over silica gel eluting with EtOAc to give 95 ($27 \mathrm{mg}, 90 \%$): mp $119-121^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$. IR (neat) $3251,1695 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.99(1 \mathrm{H}, \mathrm{s}), 7.29(2 \mathrm{H}, \mathrm{d}, J=$ $7.2 \mathrm{~Hz}), 7.15(2 \mathrm{H}, \mathrm{m}), 7.07(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 3.73(1 \mathrm{H}, \mathrm{dd}, J=$ $14.0,9.8 \mathrm{~Hz}), 3.43(1 \mathrm{H}, \mathrm{dd}, J=14.0,5.1 \mathrm{~Hz}), 3.20(1 \mathrm{H}, \mathrm{dt}, J=5.1$, $4.2 \mathrm{~Hz}), 2.48(1 \mathrm{H}, \mathrm{m}), 2.15(1 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 1.88(1 \mathrm{H}, \mathrm{dt}, J=$ $13.8,4.6 \mathrm{~Hz}), 1.4-1.7(2 \mathrm{H}, \mathrm{m}), 1.2-1.4(1 \mathrm{H}, \mathrm{m}), 1.0-1.2(21 \mathrm{H}, \mathrm{m})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 210.3,178.3,139.8,129.1,128.3,126.2,55.0$, 49.7, 47.8, 41.3, 32.0, 27.9, 20.2. HRMS $\left(\mathrm{MH}^{+}\right)$calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{2}$ 244.134, found 244.135 .

6-Azido-1,3,3a,6,7,7a-hexahydro-3-benzyl-4-triisopropylsilyl(oxy)$\mathbf{2 H}$-indol-2-one (96). Iodosobenzene ($660 \mathrm{mg}, 3 \mathrm{mmol}, 3.0$ equiv) was added to a solution of $92(400 \mathrm{mg}, 1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$, and trimethylsilylazide 95% ($728 \mathrm{mg}, 0.84 \mathrm{~mL}, 6 \mathrm{mmol}, 6$ equiv) was added via syringe. The cooling bath was removed and the reaction temperature allowed to warm to $25^{\circ} \mathrm{C}$. After 1 h the clear yellow solution was concentrated under reduced pressure (first at the rotaevaporator, then in a Kugelrohr at high vacuum at $70^{\circ} \mathrm{C}$) to give an oily residue (663 mg). Chromatography over Florisil eluting with EtOAc/hexanes (1:2) followed by pentane washing of the resulting solid gave 96 ($266.5 \mathrm{mg}, 60.5 \%$): mp $147-148{ }^{\circ} \mathrm{C}(\mathrm{MeCN})$. IR $\left(\mathrm{CHCl}_{3}\right)$ 2094, 1692, $1649 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.28-7.16$ (5 H , m), $5.74(1 \mathrm{H}, \mathrm{br}), 5.26(1 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}), 4.16(1 \mathrm{H}, \mathrm{m}), 3.97(1 \mathrm{H}$, m), $3.29(1 \mathrm{H}, \mathrm{t}, J=8.8 \mathrm{~Hz}), 3.14(1 \mathrm{H}, \mathrm{d}, \mathrm{d}, J=3.5,13.6 \mathrm{~Hz}), 2.87$ $(1 \mathrm{H}, \mathrm{dt}, J=3.6,9.3 \mathrm{~Hz}), 2.74(1 \mathrm{H}, \mathrm{dd}, J=13.6,9.2 \mathrm{~Hz}), 1.96(1 \mathrm{H}$, d, $J=13.5 \mathrm{~Hz}), 1.4-1.0(22 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) 178.2,154.1$, 139.5, 129.4, 128.2, 126.4, 102.5, 55.7, 48.8, 44.3, 42.5, 35.1, 34.8, 18.1, 18.0, 12.5. HRMS $\left(\mathrm{MH}^{+}\right)$calcd for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Si} 441.269$, found 441.268.
(E)-3-(Carboethoxy)-propenoylamino-1-triisopropylsilyl(oxy)-cy-clohexan-1-ene 97. A solution of fumaric acid monoethyl ester (0.303 $\mathrm{g}, 2.10 \mathrm{mmol})$ and N-methylmorpholine ($0.250 \mathrm{~mL}, 2.28 \mathrm{mmol}$) in THF $(50 \mathrm{~mL})$ was treated with isobutylchloroformate $(0.275 \mathrm{~mL}, 2.10 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After 15 min at $0^{\circ} \mathrm{C}, \mathbf{8 3}(0.472 \mathrm{~g}, 1.75 \mathrm{mmol})$ in THF (10 mL) was added. The ice bath was removed after 15 min , and the mixture was dissolved in $\mathrm{Et}_{2} \mathrm{O}(60 \mathrm{~mL})$, washed with saturated aqueous NaHCO_{3} $(2 \times 15 \mathrm{~mL})$, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Chromatography over silica gel eluting with EtOAc gave $97(0.666 \mathrm{~g}, 96 \%)$ as a white powder: mp $99-100{ }^{\circ} \mathrm{C}$. IR (neat) $1726,1661,1634 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $6.97(1 \mathrm{H}, \mathrm{d}, J=15.4 \mathrm{~Hz}), 6.75(1 \mathrm{H}, \mathrm{d}, J=15.4 \mathrm{~Hz}), 6.45(1 \mathrm{H}, \mathrm{d}, J$ $=8.2 \mathrm{~Hz}), 4.77(1 \mathrm{H}, \mathrm{d}, J=4.1 \mathrm{~Hz}), 4.60(1 \mathrm{H}, \mathrm{m}), 4.15(2 \mathrm{H}, \mathrm{q}, J=$ $7.1 \mathrm{~Hz}), 2.00(2 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}), 1.4-1.8(4 \mathrm{H}, \mathrm{m}), 1.23(3 \mathrm{H}, \mathrm{t}, J=$ $7.1 \mathrm{~Hz}), 0.8-1.2(21 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 165.8,162.5,155.1$, 137.1, 129.7, 103.3, 61.0, 45.1, 29.7, 28.7, 19.3, 17.8, 14.0, 12.4. HRMS (CI) calcd for $\mathrm{C}_{21} \mathrm{H}_{37} \mathrm{NSiO}_{4} 395.249$, found 395.249.

3-Carboethoxymethyl-4-triisopropylsilyl(oxy)-1,3,3a,6,7,7a-hexahy-dro-2H-indol-2-one (98) and 8-Carboethoxy-5-aza-10-triisopropyl-silyl(oxy)-tricyclo[4.4.0.0 $\left.{ }^{3,10}\right]$-decan-4-one (99). A solution of 97 (0.079 $\mathrm{g}, 0.20 \mathrm{mmol})$ in 1,2-dichloroethane (8 mL) was treated with $\mathrm{Me}_{3} \mathrm{Al}$ $\left(0.200 \mathrm{~mL}, 0.40 \mathrm{mmol}, 2.0 \mathrm{M}\right.$ solution in toluene) at $0^{\circ} \mathrm{C}$. The solution was heated to reflux under argon until completion of the reaction (3 h). The mixture was cooled to $0^{\circ} \mathrm{C}$ and quenched with water $(0.5 \mathrm{~mL})$. The crude mixture was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 5 \mathrm{~mL})$, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After concentration in vacuo the residue was purified by flash chromatography over silica gel eluting with EtOAc to give $98(0.040 \mathrm{~g}, 51 \%)$ and 99 $(0.019 \mathrm{~g}, 24 \%)$. For $98: \mathrm{mp} 100-102^{\circ} \mathrm{C}$. IR (neat) $1734,1700,1684$, $1668,1653 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.19(1 \mathrm{H}, \mathrm{s}), 5.00(1 \mathrm{H}, \mathrm{t}, J=$ $4.4 \mathrm{~Hz}), 4.0-4.2(2 \mathrm{H}, \mathrm{m}), 3.92(1 \mathrm{H}, \mathrm{dt}, J=6.0,5.1 \mathrm{~Hz}), 3.21(1 \mathrm{H}, \mathrm{dt}$,
$J=9.0,6.9 \mathrm{~Hz}), 3.09(1 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}), 2.75(1 \mathrm{H}, \mathrm{dd}, J=17.1,7.1$ $\mathrm{Hz}), 2.64(1 \mathrm{H}, \mathrm{dd}, J=17.1,6.6 \mathrm{~Hz}), 2.10(1 \mathrm{H}, \mathrm{m}), 1.90(1 \mathrm{H}, \mathrm{m}), 1.60$ $(2 \mathrm{H}, \mathrm{m}), 1.22(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 0.8-1.2(21 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 178.2,172,5,148.4,105.4,60.4,52.4,41.6,41.1,32.8,27.3,19.4$, 18.0, 14.1, 12.6. HRMS $\left(\mathrm{MH}^{+}\right)$calcd for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{NSiO}_{4} 396.257$, found 396.258. For 99: $\mathrm{mp} 120^{\circ} \mathrm{C}$. IR (neat) $3216,2942,2867,1739,1699$ $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 6.20(1 \mathrm{H}, \mathrm{s}), 4.19(1 \mathrm{H}, \mathrm{m}), 4.08(1 \mathrm{H}, \mathrm{m})$, $3.99(1 \mathrm{H}, \mathrm{m}), 3.51(1 \mathrm{H}, \mathrm{dd}, J=9.0,6.6 \mathrm{~Hz}), 3.30(1 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz})$, $2.73(1 \mathrm{H}, \mathrm{t}, J=9.4 \mathrm{~Hz}), 2.00(1 \mathrm{H}, \mathrm{d}, J=12.9 \mathrm{~Hz}), 1.6-1.8(3 \mathrm{H}, \mathrm{m})$, $1.4-1.5(2 \mathrm{H}, \mathrm{m}), 1.21(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 1.00(21 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 178.5,169.0,76.4,60.7,51.9,51.5,42.0,36.4,35.8,28.6$, 18.2, 16.4, 14.1, 13.1. HRMS $\left(\mathrm{MH}^{+}\right)$calcd for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{NSiO}_{4}$ 396.257, found 396.256 .

3-Carboethoxymethyl-1,3,3a,6,7,7a-hexahydro-2H-indol-2,4-dione (100). A solution of $98(0.040 \mathrm{~g}, 0.101 \mathrm{mmol})$ in THF $(4 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was treated with $n-\mathrm{Bu}_{4} \mathrm{NF}(0.111 \mathrm{~mL}, 0.111 \mathrm{mmol}, 1.0 \mathrm{M}$ solution in THF). After the reaction was complete (5 min), the solution was concentrated in vacuo and applied to a short column of silica gel eluting with EtOAc to give $100(0.020 \mathrm{~g}, 83 \%)$ as an oil: IR (neat) 3261 , $2939,1699 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.00(1 \mathrm{H}, \mathrm{s}), 4.19(1 \mathrm{H}, \mathrm{m}), 4.10$ $(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}), 3.16(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 3.04(1 \mathrm{H}, \mathrm{m}), 2.93(2 \mathrm{H}$, $\mathrm{d}, J=6.4 \mathrm{~Hz}), 2.40(1 \mathrm{H}, \mathrm{m}), 2.30(1 \mathrm{H}, \mathrm{m}), 1.7-2.1(4 \mathrm{H}, \mathrm{m}), 1.23$ $(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 209.9,177.4,172.7,60.6$, $53.5,48.6,41.8,40.8,31.0,27.5,18.4,14.16 . \mathrm{HRMS}\left(\mathrm{MH}^{+}\right)$calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}_{4} 240.124$, found 240.124.

3-((E)-4-Nitrocinnamoylamino)-2-methyl-1-triisopropylsilyl(oxy)-cyclohex-1-ene (103). To a solution of $101(1.8 \mathrm{~g})$ in THF (50 mL) and $\mathrm{Et}_{3} \mathrm{~N}$ (2.75 mL , ca. 3 equiv) was treated with (E)-4-nitrocinnamoyl chloride $(1.2 \mathrm{~g})$ at $-70^{\circ} \mathrm{C}$. After 20 min the cooling bath was removed and the slurry diluted with EtOAc , washed with saturated aqueous NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated in vacuo. The residue was purified by chromatography over silica gel eluting with $\mathrm{EtOAc} /$ hexanes $(1: 4)$ to give $\mathbf{1 0 3}(336 \mathrm{mg})$ of pure product as a viscous oil along with 468 mg of a slightly impure fraction: ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.25(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}), 7.7(1 \mathrm{H}, \mathrm{d}, J=13 \mathrm{~Hz}), 7.65$ $(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}), 6.5(1 \mathrm{H}, \mathrm{d}, J=13 \mathrm{~Hz}), 5.65(1 \mathrm{H}, \mathrm{d}, J=10 \mathrm{~Hz})$, $4.55(1 \mathrm{H}, \mathrm{br}), 2.25-2.0(2 \mathrm{H}, \mathrm{m}), 1.9-1.4(4 \mathrm{H}, \mathrm{m}), 1.65(3 \mathrm{H}, \mathrm{s}), 1.3-$ $0.9(21 \mathrm{H})$. Used directly in the next step.

3a-Methyl-3-(4-nitrobenzyl)-4-triisopropylsilyl(oxy)-1,3,3a,6,7,7a-hexahydro-2H-indol-2-one (105). All glassware was treated with hexamethyldisilazane for 24 h and oven dried prior to use. A solution of $\mathbf{1 0 3}(266 \mathrm{mg}, 0.58 \mathrm{mmol})$ in toluene $(10 \mathrm{~mL})$ was treated with $\mathrm{Me}_{3}{ }^{-}$ $\mathrm{Al}\left(0.34 \mathrm{~mL}, 2 \mathrm{M}\right.$ in toluene, 1.2 equiv) at $25^{\circ} \mathrm{C}$ and heated at reflux for 41 h . The solution was cooled to $25^{\circ} \mathrm{C}$ and water $(1 \mathrm{~mL})$ added. The mixture was extracted with EtOAc $(2 \times 10 \mathrm{~mL})$, washed twice with saturated aqueous NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The crude oil (228 mg) was purified by chromatography over silica gel eluting with $\mathrm{Et}_{2} \mathrm{O} /$ pentane (4:1) to give 105 (122 mg, 46%): mp $134-136^{\circ} \mathrm{C}$ (pentane). IR $\left(\mathrm{CHCl}_{3}\right) 3430$, $1696 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.14(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz})$, $7.42(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 6.02(1 \mathrm{H}, \mathrm{s}), 5.00(1 \mathrm{H}, \mathrm{t}, J=4.2 \mathrm{~Hz}), 3.38$ $(1 \mathrm{H}, \mathrm{dd}, J=3.9,10.2 \mathrm{~Hz}), 3.30(1 \mathrm{H}, \mathrm{dd}, J=2.8 \mathrm{~Hz}, 14.2 \mathrm{~Hz}), 2.85$ $(1 \mathrm{H}, \mathrm{dd}, J=11.4,14 \mathrm{~Hz}), 2.40(1 \mathrm{H}, \mathrm{dd}, J=3.0,11.3 \mathrm{~Hz}), 2.2-1.95$ $(2 \mathrm{H}, \mathrm{m}), 1.65-1.45(1 \mathrm{H}, \mathrm{m}), 1.43(3 \mathrm{H}, \mathrm{s}), 1.37-0.9(21 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 177.7,151.2,148.8,146.3,129.8,123.4,103.1,60.4$, $52.9,46.3,35.9,28.5,26.7,20.6,18.3,12.8$. HRMS $\left(\mathrm{MH}^{+}\right)$calcd for $\mathrm{C}_{25} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si} 459.268$, found 459.266.

3-((E)-4-Nitrocinnamoylamino)-2-phenyl-1-triisopropylsilyl(oxy)-cyclohex-1-ene (104). 4-Nitrocinnamoyl chloride ($1.7 \mathrm{~g}, 8 \mathrm{mmol}$) was
added to a solution of $\mathbf{1 0 2}$ [2.79 g, crude, assay approximately 50$\left.60 \%, \mathrm{Et}_{3} \mathrm{~N}(2.45 \mathrm{~g}, 3.4 \mathrm{~mL}, 24 \mathrm{mmol})\right]$ in THF $(100 \mathrm{~mL})$ at $-60^{\circ} \mathrm{C}$. After 5 min the temperature was allowed to rise to $25^{\circ} \mathrm{C}$ and after 10 h diluted with EtOAc $(20 \mathrm{~mL})$ and washed with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ followed by brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to give $\mathbf{1 0 4}$ (4.2 g of crude material). Purification by chromatography over silica gel eluting with hexanes/EtOAc (5:1 to 4:1) gave $\mathbf{1 0 4}(1.217 \mathrm{~g}): \mathrm{mp} 160-162^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$. Further purification of the mixed fractions including mother liquors yielded another crop of $\mathbf{1 0 4}\left(495 \mathrm{mg}, \mathrm{mp} 157^{\circ} \mathrm{C}\right.$). Overall yield of $\mathbf{1 0 4}$ based on the azide is 32.9% : IR $\left(\mathrm{CHCl}_{3}\right) 3434,1662,1625 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.18(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.55(2 \mathrm{H}, \mathrm{d} J=8.7 \mathrm{~Hz}), 7.50(1 \mathrm{H}$, $\mathrm{d}, J=15.5 \mathrm{~Hz}), 7.35(2 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 7.26(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz})$, $7.14(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 6.30(1 \mathrm{H}, \mathrm{d}, J=15.5 \mathrm{~Hz}), 5.60(1 \mathrm{H}, \mathrm{d}, J=$ $7.5 \mathrm{~Hz}), 5.11-5.09(1 \mathrm{H}, \mathrm{m}), 2.4-2.2(2 \mathrm{H}, \mathrm{m}), 2.1-2.0(1 \mathrm{H}, \mathrm{m}), 1.95-$ $1.7(3 \mathrm{H}, \mathrm{m}), 1.0-0.8(21 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 163.6$, 150.7, 148.0, 141.1, 138.4, 137.9, 129.6, 126.7, 125.4, 123.7, 116.5, 48.6, 31.5, 28.8, 19.2, 18.0, 13.5. HRMS $\left(\mathrm{MH}^{+}\right)$calcd for $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{4^{-}}$ Si 521.284, found 521.283.

3-(4-Nitrobenzyl)-3a-phenyl-4-triisopropylsilyl(oxy)-1,3,3a,6,7,7a-hexahydro-2H-indol-2-one (106). A solution of the amide 104 (521 $\mathrm{mg} .1 \mathrm{mmol})$ in p-xylene $(10 \mathrm{~mL})$ was treated with $\mathrm{Me}_{3} \mathrm{Al}(0.55 \mathrm{~mL}$, 2 M in toluene, 1.1 equiv) at $25^{\circ} \mathrm{C}$. and then heated to reflux for 24 h. The mixture was cooled to $25^{\circ} \mathrm{C}$ and $\mathrm{EtOAc}(10 \mathrm{~mL})$ added. The mixture was washed with saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, treated with activated charcoal, and concentrated to give 106 (508 mg of crude). Purification by chromatography over silica gel eluting with $\mathrm{Et}_{2} \mathrm{O}$ /hexanes (4:1) gave the starting material ($58 \mathrm{mg}, 11 \%$), and 106 ($113 \mathrm{mg}, 24.4 \%$): mp 203-204 ${ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$. IR $\left(\mathrm{CHCl}_{3}\right) 3431,1700 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.17(2 \mathrm{H}, \mathrm{d}$, $J=8.6 \mathrm{~Hz}), 7.51(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.43(2 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}), 7.33$ $(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 7.26(1 \mathrm{H}, \mathrm{d}, J=7,4 \mathrm{~Hz}), 5.71(1 \mathrm{H}, \mathrm{br}), 5.28(1 \mathrm{H}$, $\mathrm{t}, J=4.2 \mathrm{~Hz}), 3.66(1 \mathrm{H}, \mathrm{dd}, J=3.8 \mathrm{~Hz}, J=8.6 \mathrm{~Hz}), 3.40(2 \mathrm{H}, \mathrm{d}, J$ $=11.6 \mathrm{~Hz}), 3.07(1 \mathrm{H}, \mathrm{dd}, J=11.7,14.4 \mathrm{~Hz}), 2.4-2.2(2 \mathrm{H}, \mathrm{m}), 2.1-$ $1.9(1 \mathrm{H}, \mathrm{m}), 1.9-1.7(1 \mathrm{H}, \mathrm{m}), 1.2-0.8(21 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 177.0,150.2,148.8,146.5,143.7,130.0,128.5,127.1,126.8$, 123.6, 105.2, 62.0, 55.2, 49.1, 35.3, 26.8, 20.5, 18.3, 18.0, 12.7. HRMS $\left(\mathrm{MH}^{+}\right)$calcd for $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{4}$ Si 521.284, found 521.284.

Acknowledgment. The National Institutes of Health (GM 32718), National Science Foundation, and Robert A. Welch Foundation are thanked for their support of this research. Rhône Poulenc are thanked for a graduate fellowship (J.L.). SERC/ NATO is thanked for a postdoctoral fellowship (A.E.). H.T. thanks Ciba Geigy, Basle, for a sabbatical fellowship. Dr. Vince Lynch (authors address) is thanked for the X-ray crystallographic structural determinations of $\mathbf{8 5}$ and $\mathbf{8 6}$.

Supporting Information Available: Complete experimental details and spectral information for compounds $\mathbf{1 0}, 12,14,16$, $18,18 \mathrm{a}, 20,22,24,26,28,30,32,38,40,44,45,46,53,56$, 60, 73, 76, 77, 78, 79, 101, 102, and X-ray crystallographic data for $\mathbf{8 5}$ and $\mathbf{8 6}$ is available (22 pages, print/PDF). See any current masthead page for ordering information and Web access instructions.

JA9829564

[^0]: (1) Magnus, P.; Lacour, J.; Evans, P. A.; Roe, M. B.; Hulme, C. J. Am. Chem. Soc. 1996, 118, 3406.
 (2) Magnus, P.; Evans, P. A.; Lacour, J. Tetrahedron Lett. 1992, 33, 2933.
 (3) Magnus, P.; Lacour, P. J. Am. Chem. Soc. 1992, 114, 3993.
 (4) Magnus, P.; Rigollier, P.; Lacour, J.; Tobler, H. J. Am. Chem. Soc. 1993, 115, 12629.
 (5) The synthesis (+)-pancratistatin using a β-aminoTIPS enol ether. Magnus, P.; Sebhat, I. K. J. Am. Chem. Soc. 1998, 120, 5341.
 (6) For a review, see: Buckle, D. R.; Pinto, I. L. In Oxidation Adjacent to $\mathrm{C}=\mathrm{X}$ Bonds by Dehydrogenation. Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: New York, 1991; Vol. 7.
 (7) Slotter, P. L.; Hill, K. A. J. Org. Chem. 1973, 38, 2576. Ladjama, D.; Riehl, J.-J. Synthesis 1979, 504. Jung, F.; Ladjama, D.; Riehl, J.-J. Synthesis 1979, 507. Blanco, L.; Amice, P.; Conia, J.-M. Synthesis 1976, 194. Ravid, U.; Ikan, R. Synth. Commun. 1975, 5, 137.
 (8) Trost, B. M.; Saltzman, T. N.; Hiroi, K. J. Am. Chem. Soc. 1976, 98, 4887.
 (9) Reich, H. J.; Renga, J. M.; Reich, I. L. J. Am. Chem. Soc. 1975, 97, 5434. Barton, D. H. R.; Motherwell, W. B.; Wozniak, J.; Zard, S. Z. J. Chem. Soc., Perkin Trans. I 1985, 1865. Clive, D. L. J. Tetrahedron 1978, 34, 1049.
 (10) Ryu, I.; Murai, S.; Hatayama, Y.; Sonoda, N. Tetrahedron Lett. 1978, 3455. Fleming, I.; Paterson, I. Synthesis 1979, 736.
 (11) Kane, V. V. Synth. Commun. 1976, 6, 237. Ringold, H. J.; Turner, A. B. Chem. Ind. (London) 1962, 211. Ito, Y.; Hirao, T.; Saegusa, T. J. Org. Chem. 1978, 43, 1011. Tsuji, J.; Minami, I. Acc. Chem. Res. 1987, 20, 140. Tsuji, J.; Minami, I.; Shimizu, I. Tetrahedron Lett. 1983, 24, 5635. Tsuji, J.; Minami, I.; Shimizu, I. Kataoka, H. Chem. Lett. 1984, 1133. Shimizu, I.; Tsuji, J. J. Am. Chem. Soc. 1982, 104, 5844.
 (12) For an example of a large scale Tsuji reaction see: Magnus, P.; Miknis, G. F.; Press: N. J.; Grandjean, D.; Taylor, G. M.; Harling, J. J. Am. Chem. Soc. 1997, 119, 6739.

[^1]: (13) Leonard, N. J.; Owens, F. H. J. Am. Chem. Soc. 1958, 80, 6039. Wasserman, H. H.; Gosselink, F.; Keith, D. D.; Nadelson, J.; Sykes, R. J. Tetrahedron 1976, 32, 1863.
 (14) Cope, A. C.; Kinter, M. R.; Keler, R. T. J. Am. Chem. Soc. 1954, 76, 2757. See also ref 9.
 (15) Elad, D.; Ginsburg, D. J. Chem. Soc. 1953, 2664. Bachmann, W. E.; Wick, L. B. J. Am. Chem. Soc. 1950, 72, 3388.
 (16) Hung, S.-C.; Liao, C.-C. J. Chin. Chem. Soc. (Taipei) 1994, 41 (2), 191.

[^2]: (19) Auwers, K von.; Treppmann, W. Chem. Ber. 1915, 48, 1207. Evans, P. A.; Longmire, J. M.; Modi, D. P. Tetrahedron Lett. 1995, 36, 3985. Vorläender, D.; Kunze, K. Chem. Ber. 1926, 59, 2078. House, H. O.; Gall, M.; Olmstead, H. D. J. Org. Chem. 1971, 36, 2361.
 (20) Cantrall, E. W.; Littell, R.; Bernstein, S. J. Org. Chem. 1964, 29, 64. Johnson, W. S.; Johns, W. F. J. Am. Chem. Soc. 1957, 79, 2005.
 (21) Michael, A. J. Prakt. Chem. 1887, 35, 349. Michael, A. Am. Chem. J. 1887, 9, 115. Michael, A. J. Prakt. Chem. 1894, 49, 20.
 (22) Kharash, M. S.; Tawney, P. O. J. Am. Chem. Soc. 1941, 63, 2308.
 (23) House, H. O.; Respess, W. L.; Whitesides, G. M. J. Org. Chem. 1966, 31, 3128.
 (24) Gilman, H.; Kirby, R. J. Am. Chem. Soc. 1941, 63, 2046.
 (25) Yamamoto, Y.; Maruyama, K. J. Am. Chem. Soc. 1977, 99, 8068. Yamamoto, Y.; Maruyama, K. J. Am. Chem. Soc. 1978, 100, 3240.

[^3]: (26) Hosomi, A.; Sakurai, H. J. Am. Chem. Soc. 1977, 99, 1673. Hosomi, A.; Iguchi, H.; Endo, M.; Sakurai, H. Chem. Lett. 1979, 977.
 (27) Mobilio, D.; De Lange, B. Tetrahedron Lett. 1987, 28, 1483.

[^4]: (28) Magnus, P.; Lacour, J.; Weber, W. J. Am. Chem. Soc. 1993, 115, 9347. Magnus, P.; Hulme, C.; Weber, W. J. Am. Chem. Soc. 1994, 116, 4501. Magnus, P.; Lacour, J.; Weber, W. Synthesis 1998, 547.
 (29) Narasaka, K.; Soai, K.; Mukaiyama, T. Chem. Lett. 1974, 1223. Narasaka, K.; Soai, K.; Aikawa, K.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 1976, 49, 779. Saigo, K.; Osaki, M.; Mukaiyama, T. Chem. Lett. 1976, 163. Heathcock, C. H.; Norman, M. H.; Uehling, D. E. J. Am. Chem. Soc. 1985, 107, 2797. Heathcock, C. H.; Uehling, D. E. J. Org. Chem. 1986, 51, 279.
 (30) Boyer, J.; Corriu, R. J. P.; Perz, R.; Reye, C. J. Organomet. Chem. Commun. 1980, 184, 157. Boyer, J.; Corriu, R. J. P.; Perz, R.; Reye, C. J. Chem. Soc., Chem. Commun. 1981, 122. Boyer, J.; Corriu, R. J. P.; Perz, R.; Reye, C. Tetrahedron 1983, 39, 117.
 (31) Kawai, M.; Onaka, M.; Izumi, Y. J. Chem. Soc., Chem. Commun. 1987, 1203.
 (32) Duhamel, P.; Hennequin, L.; Poirier, N.; Poirier, J.-M. Tetrahedron Lett. 1985, 26, 6201.
 (33) Kobayashi, S.; Murakami, M.; Mukayaima, T. Chem. Lett. 1985, 953. Mukayaima, T.; Tamura, M.; Kobayashi, S. Chem. Lett. 1986, 1017.
 (34) Iwasaki, H.; Kume, T.; Yamamoto, Y.; Akiba, K. Tetrahedron Lett. 1987, 28, 6355.
 (35) Nagata, W.; Yoshioka.; Hirai, S. J. Am. Chem. Soc. 1972, 94, 4635. Nagata, W.; Yoshioka, M.; Murakami, M. J. Am. Chem. Soc. 1972, 94, 4644. Nagata, W.; Yoshioka, M.; Terasawa, T. J. Am. Chem. Soc. 1972, 94, 4672. Nagata, W.; Yoshioka, M. Org. React. 1977, 25, 255.
 (36) Utimoto, K.; Obayashi, M.; Shishiyama, Y.; Inoue, M.; Nozaki, H. Tetrahedron Lett. 1980, 21, 3389.

[^5]: (49) Rivière, H.; Tostain, J. Bull. Soc. Chim. Fr. 1969, 568. Hoye, T. R.; Magee, A. S.; Rosen, R. E. J. Org. Chem. 1984, 49, 3224.
 (50) Allinger, N. L.; Riew, H. W. Tetrahedron Lett. 1966, 1269.

[^6]: (51) Seeman, J. I. Chem. Rev. 1983, 83, 83.
 (52) Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976, 734. Baldwin, J. E.; Cutting, J.; Dupont, W.; Kruse, L.; Silberman, L.; Thomas, R. C. J. Chem. Soc., Chem. Commun. 1976, 736. Deslongchamps, P. Stereoelectronic Effects in Organic Chemistry; Pergamon Press: New York, 1983; p 221241.
 (53) The closest analogy to the reaction depicted in Scheme $4(\mathbf{8 4} \rightarrow$ 87) is the intramolecular Michael addition of a cyclic β-ketoester to a conjugated ketone. Berthiaume, G.; Lavallée, J.-F.; Deslongchamps, P. Tetrahedron Lett. 1986, 27, 5451.

[^7]: (55) Momose, T.; Miyata, T.; Imanishi, T. Heterocycles 1978, 9, 17. Momose, T.; Uchida, S.; Miyata, T.; Ohshima, K.; Chiamchittrong, K.; Imanishi, T. Heterocycles 1979, 12, 393. Witiak, D.; Patch, R. J.; Enna, S. J.; Fung, Y. K. J. Med. Chem. 1986, 29, 2.

[^8]: (56) Rücher, C. Chem. Rev. 1995, 95, 1009.
 (57) Unless noted otherwise, all starting materials were obtained from commercial suppliers and were used without further purification. Diethyl ether ($\mathrm{Et}_{2} \mathrm{O}$) and tetrahydrofuran (THF) were distilled from sodium/ benzophenone under nitrogen prior to use. N, N-Dimethylformamide (DMF), hexane, and benzene were distilled from calcium hydride. Methanol (MeOH) was distilled from magnesium methoxide and stored over $3 \AA$ molecular sieves under argon. Triethylamine was distilled from calcium hydride and stored under argon. All reactions involving organometallic reagents or other moisture-sensitive reactants were executed under an atmosphere of dry nitrogen or argon using oven-dried and/or flame-dried glassware. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 300 MHz as solutions in deuteriochloroform $\left(\mathrm{CDCl}_{3}\right)$, unless otherwise indicated. Chemical shifts are expressed in parts per million (ppm, δ) downfield from tetramethylsilane (TMS) and are referenced to $\mathrm{CDCl}_{3}(7.24 \mathrm{ppm})$ as internal standard. Splitting patterns are designated as s , singlet; d, doublet; t , triplet; q, quartet; m, multiplet; br, broad. Coupling constants are given in hertz (Hz). ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 75 MHz as solutions in CDCl_{3} unless otherwise indicated. Chemical shifts are reported in parts per million (ppm, δ) downfield from TMS and are referenced to the center line of $\mathrm{CDCl}_{3}(77.0 \mathrm{ppm})$ as internal standard; or indicate even or odd numbers of hydrogens carried by the carbon. IR spectra were recorded either neat on sodium chloride plates or as solutions in the solvent as indicated.

[^9]: (58) Important Cautionary Information: Reactions involving TMSN 3 are capable of being violently explosive. It is important to make certain that the evolution of dinitrogen is complete before work-up. The reactions must not be allowed to run dry and should be conducted behind a safety shield.

